PLAN HIDROLÓGICO DE LA DEMARCACIÓN HIDROGRÁFICA DE FUERTEVENTURA

Cuarto Ciclo 2027-2033

DOCUMENTOS INICIALES

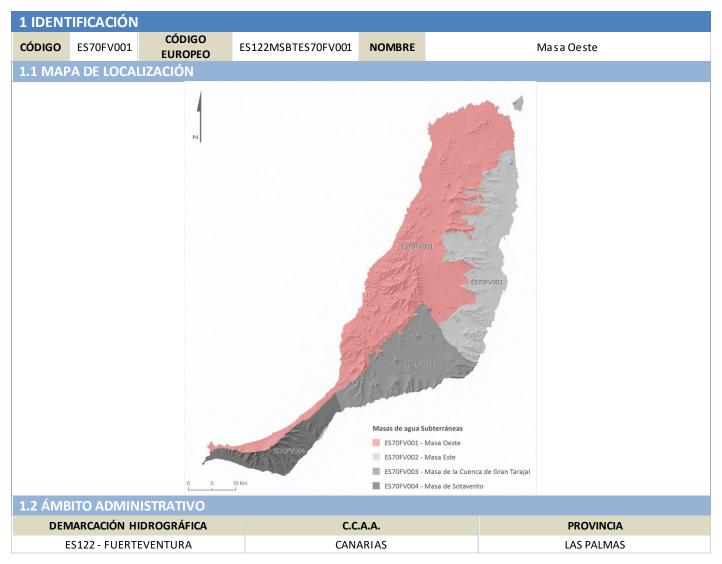
PROGRAMA DE TRABAJO

CALENDARIO

ESTUDIO GENERAL SOBRE LA DEMARCACIÓN HIDROGRÁFICA

FÓRMULAS DE CONSULTA

ANEXO 2. CARACTERIZACIÓN ADICIONAL DE LAS MASAS DE AGUA SUBTERRÁNEA



Demarcación Hidrográfica de Fuerteventura

ÍNDICE

1	FICHA	DE	CARACTERIZACIÓN	ADICIONAL	DE	LA	MASA	DE	AGUA	SUBTERRÁNEA
ES1	.22MSB	ΓES7	0FV001		•••••			•••••		3
2	FICHA	DE	CARACTERIZACIÓN	ADICIONAL	DE	LA	MASA	DE	AGUA	SUBTERRÁNEA
ES1	.22MSB	ΓES7	0FV002					•••••		18
3	FICHA	DE	CARACTERIZACIÓN	ADICIONAL	DE	LA	MASA	DE	AGUA	SUBTERRÁNEA
ES1	.22MSB	ΓES7	0FV003		•••••			•••••		32
4	FICHA	DE	CARACTERIZACIÓN	ADICIONAL	DE	LA	MASA	DE	AGUA	SUBTERRÁNEA
ES1	.22MSB	ΓES7	0FV004		•••••			•••••		48

1.- FICHA DE CARACTERIZACIÓN ADICIONAL DE LA MASA DE AGUA SUBTERRÁNEA ES122MSBTES70FV001

1.3 CARACTERIZACIÓN FUNCIONAL Y TERRITORIAL								
COORDENADAS		ÁREA TOTAL DE LA MASA	LONGITUD	PERÍMETRO	ALTITU	D (m s.n.m.)		
CEN.	TROIDE	(km²)	COSTA (km) (km)		Máxima	Mínima		
X:	Y:	868,67	_	377,92	800	0		
594.399	3.150.803	000,07		377,32		U		
% SUPERFICIE MASA EN CULTIVO (2014)		5,99						

	SECTOR	NOMBRE
	N	Zona Norte
	A1	Zona de Alimentación La Muda-Aceitunal
ZONIFICACIÓN	A2	Zona de Alimentación Macizo de Betancuria
HIDROGEOLÓGICA	J1	Sector 1 de la Zona de Jandía. Zona cuyas aguas vi erten hacia el norte (Barlovento)
	01	Sector norte de la Zona Oeste. Llanos y valles vertientes al oeste.
	02	Sector sur de la Zona Oeste. Llanos y va lles vertientes al oeste.

ESTRUCTURA GEOHIDROLÓGICA DOMINANTE

Las rocas con mayor interés hidrogeológico son los Basaltos de la Serie I, que es de donde se extrae la mayor parte del agua subterránea, y los materiales aluviales de los barrancos principales.

NOMBRE MUNICIPIO	% ÁREA MUNICIPIO INCLUIDA EN MASA	% ÁREA MUNICIPIO RESPECTO TOTAL MASA
La Oliva	80,63	32,98
Pto. Del Rosario	48,46	16,21
Antigua	47,68	13,69

NOMBRE MUNICIPIO	% ÁREA MUNICIPIO INCLUIDA EN MASA	% ÁREA MUNICIPIO RESPECTO TOTAL MASA		
Betancuria	100	11,9		
Pájara	51,2	22,5		

1.4 POBLACIÓN ASENTADA		
TIPO DE POBLACIÓN	Nº DE HABITANTES EN EL ENTORNO DE LA MASA	CENSO
De derecho	34.780	INE (2022)

1.5 ZONAS PROTEGIDAS REGISTR	ADAS EN LA MASA DE AGUA			
Zonas captación abastecimiento a poblaciones	CÓDIGO	DENOMINACIÓN		
	EDAM_006	Sondeo 2728-EDAM Parque de Ocio y Cultura BAKU		
Protección de hábitat/especies	CÓDIGO	DENOMINACIÓN		
	ES7010034	Montaña Cardón		
	ES7010042	Playa del Matorral		
	ES7010014	Cueva de Lobos		
	ES7010023	Mal país de La Arena		
	ES7010024	Vega de Río Palmas		
	ES7010033	Jandía		
	ES0000096	Pozo Negro		
	ES7010064	Ancones-Sice		
	ES7010062	Betancuria		
	ES7010032	Corralejo		
Red Canaria de Es pacios Naturales Protegidos	CÓDIGO	DENOMINACIÓN		
	ES122ENPFV002	Parque Natural de Corralejo		
	ES122ENPFV003	Parque Natural de Jandía		
	ES122ENPFV004	Parque Rural de Betancuria		
	ES122ENPFV006	Monumento Natural de Ajuí		

2. CARACTERÍSTICAS GEOLÓGICAS GENERALES

2.1 ÁMBITO GEOESTRUCTURAL

La geomorfología estructural de la isla de Fuerteventura, aparece condicionada por la antigüedad de sus materiales, observándo se formas vol cánicas derivadas (diques exhumados, necks y cuchillos) y formas alomadas asociadas al Com plejo Basal.

En su conjunto, la configuración morfoestructural de la Isla obedece a su larga evolución geológica y a la construcción en dos grandes etapas de formación: la que conforma el Complejo Basal y la correspondiente a la actividad volcánica subaérea.

2.2 COLUMNA VOLCANOFSTRATIGRÁFICA

2.2 COLUMNA VOLCANOESTRATIGRAPICA								
COLUMNA LITOLÓGICA TIPO GENERAL (fuente: SPA-15, 1975)								
LITOLOGÍA	FORMACIÓN	POTENCIA (m)	EDAD GEOLÓGICA	OBSERVACIONES				
Conos de cínder y tobas, lavas "aa" y "pahoe- hoe"	Basaltos Recientes y Sub-Recientes (Serie IV)	Pocos metros	0-0,8 Ma	Basaltos alcalinos-olivínicos				
Cráteres piroclásticos. Superficies de cráteres cubiertas por caliche.	Volcanes del Cuaternario Superior (Serie III)	Pocos metros	1,7-1,8 Ma	Basaltos alcalinos-olivínicos				
Volca nes en escudo y campos de lava asociados. Pa le o-playas y pa leo-du nas	Basaltos Cuaternarios (Serie II)	Decenas de metros	2,4-2,9 Ma	Basaltos alcalinos-olivínicos				
Basaltos sub-horizontales, conos enterados, aglomerados de nube ardiente, diques. Piroclastos principalmente, conos enterados, diques.	Basaltos Antiguos (Seriel)	300-600 (máx 800m)	Mio-Plioceno	Basaltos alcalinos-olivínicos. Similar a Gran Canaria y Tenerife.				
Di ques basálticos Di ques a nulares en rocas plutónicas (sieníticos)		Hasta 700m s.n.m.	Terciario Inferior y Medio	Similar a La Palma y Gomera				
Rocas plutónicas; piroxenos, gabros, dioritas	Commissio Bossi	-	-					
La va s basálticas almohadilladas	Complejo Basal	Centenares de metros	Mesozoico Cretáceo Superior	Plegado y atravesado por diques				
Rocas s edimentarias, calizas, a reniscas, etc.		-	-					

2.3 DESCRIPCIÓN GEOLÓGICA

Los materiales geológicos que constituyen la isla de Fuerteventura se pueden agrupar en tres grandes dominios: Complejo Basal, Post-Complejo Basal y formaciones sedimentarias recientes.

El complejo basal está esencialmente representado por un conjunto de materiales volcánicos submarinos (Oligoceno) apoyados so bre un fragmento de corteza oceánica de edad Jurásico inferior-Cretácico inferior y medio, que se encuentran intruidos por una secuencia de cuerpos plutónicos y un importante haz filoniano (Casillas et al, 2008), del oligoceno superior-Mioceno.

Los materiales del Post-Complejo Basal se corresponden con la fase de construcción subaérea de la islay han sido agrupados tradicionalmente en las series basálticas o volcánicas (según a utores) I, II, III y IV

Las formaciones sedimentarias recientes, que son la última unidad estratigráfica generada en la isla, se han conformado funda mentalmente en el holoceno. Según la descripción del ITGE (1990), se diferencian depósitos de rambla (en la red fluvial), conos de deyección (abanicos de derrubios de ladera), sedimentos lacustres (limos y arcillas de relleno de pequeñas cuencas endorreicas), formaciones de 'caliches' y de pósitos de playas de arena.

<u>Fuente</u>: Casillas, R.; Fernández, C.; Ahijado, A., Gutiérrez, M.; García-Navarro, E. & Camacho, M. (2008a). Excursión postcongreso nº2: Crecimiento temprano y evolución tectónica de la Isla de Fuerteventura. En: Pérez-Torrado, F. y Cabrera, M.C. (Ed). Itinerarios Geológicos por las Islas Canarias: Fuerteventura, Lanzarote, La Gomera y El Hierro. Sociedad Geológica de Es paña. Geoguías, 6: 59-86.").

3. CARACTERÍSTICAS HIDROGEOLÓGICAS

3.1 LÍMITES HIDROGEOLÓGICOS DE LA MASA

Al Norte y Oeste el sistema acuífero abierto de la masa de agua subterránea limita con el océano Atlántico, siendo el senti do de flujo de salida al mar. Limita al Sur con la masa de agua ES70FV003-Masa de Sotavento y al Este con las masas de agua subterráneas ES70FV002-Masa Este y ES70FV003- Masa de la Cuenca de Gran Tarajal.

3.2 NATURALEZA DEL ACUÍFERO

Se definen dos tipos acuíferos: insular (asociado a series antiguas) y someros (asociados a formaciones sedimentarias cua temarias y a formaciones sedimentarias modernas). Estos acuíferos en general funcionan de forma independiente, pero en algunos puntos, por su ubicación, están conectados con el acuífero insular. Las rocas con mayor interés hidrogeológico son los Basaltos de la Serie I, que es de donde se extrae la mayor parte del agua subterránea, y los materiales aluviales de los barrancos principales.

El comportamiento hidrogeológico es anisótropo. Los acuíferos muestran en general malas características hidrogeológicas debido a la aridez del clima (baja potencia saturada) y baja permeabilidad de los materiales. Gran parte de la recarga se produce ligada a la precipitación asociada a las zonas de mayor altitud y las gavias en la falda de las mismas, o en zonas susceptibles de recoger el agua mediante caños y conducirla hasta las gavias. Las gavias en uso actúan como verdaderas balsas de recarga. Se estima que reciben un aporte a dicional de 200 mm, al que ha de sumarse la pluviometría correspondiente. Las aguas de recarga tienen un alto contenido en sales principalmente por efecto de la aridez climática. En general la salinidad aumenta con la profundidad, que se atribuye a la interacción agua-roca y, en algunos sectores, a la mezcla con agua marina relicta (Herrera 2001).

Como singularidad cabe destacar la existencia de cuencas cerradas por materiales muy permeables, que permiten una circulación subsuperficial, como en el caso del Malpaís de Pozo Negro. También es singular, por su funcionamiento hidrológico, el caso de la zona endorreica de los alrededores de Lajares-La Oliva o el malpaís de la Cordillera del Bayuyo en el extremo norte.

No se descarta la posibilidad de que existan reservas en la Península de Jandía y en el macizo de La Muda-Aceitunal. Estas reservas tendrían la consideración de recursos no renovables o difícilmente renovables.

3.3 MAGNITUDES GEOHIDROLÓGICAS DE REFERENCIA (Fuente: Herrera, 2001-Macizo de Betancuria)

FORMACIÓN GEOLÓGICA	PERMEABIL	IDAD (m/día)	TRANSMISIVIDAD (m²/día)		
TORWIACION GEOLOGICA	Min.	Max.	Min.	Max.	
Basaltos Miocenos (lavas)	0,009	1,2	-	-	
La va s submarinas del Complejo Basal	0,1	0,3	-	-	
Roca s i ntrusivas del Complejo Basal	-	-	47	114	

La principal característica hidrogeológica del conjunto insular es su anisotropía, que genera variaciones muy grandes (de hasta cuatro órdenes de magnitud) de los principales parámetros hidrogeológicos. La permeabilidad y la porosidad generalmente se encuentran asociadas a los tramos escoriáceos de coladas y depósitos piroclásticos poco compactados, y a coladas fracturadas generalmente por grietas de retracción. Los tramos impermeables pueden corresponder a coladas donde los poros y fisuras no están conectados, ciertos niveles de tobas y almagres. Los diques pueden actuar como barreras impermeables o como drenes permeables si están suficientemente fracturados, favoreciendo en general el drenaje vertical frente a l horizontal debido a su disposición. El paso del tiempo empobrece las características hi drogeológicas por alteración (generación de minerales arcillosos que puedan rellenar o sellar grietas) y por compactación por el peso en profundidad (ITGE, 1990). También encostramientos minimizan de forma drástica la permeabilidad.

3.4 PIEZO	3.4 PIEZOMETRÍA								
POSICIÓN DE LA SUPERF. FREÁTICA EN 1983 (m s.n.m.)			POTENCIA MEDIA ZONA DE TRÁNSITO	MEDIA ZONA INICIAL (1983) RESPECTO DE 1989			DESCENSO DE LA SUPERF. FREÁTICA EN 2012 RESPECTO DE 1983 (m)		
Max.	Min.	Media	Promedio anual	Max.	Min.	media	Max.	Min.	Media
300	75	212,7	-	60	-50	-6,67	15	-74	-13

El flujo es asimétrico, con gradientes muy bajos en algunas zonas (principalmente en la Llanura Central). En toda la costa noroeste se producen des cargas próximas a la costa y con un contenido en sales elevado. Los nacientes situados en la cara norte de la península de Jandía y, en general, los situados en las cabeceras de los barrancos tienen mejor calidad relativa. Y por otra parte, cabe destacar la práctica desconexión hidrogeológica de la Península de Jandía del resto de la isla.

Los mayores descensos y a umentos de nivel piezométrico se i dentificaron entre 1983 y 1989 con valores de -75 m y +60 m, res pectivamente, concentrándose en la parte central de la ES70FV001 – Masa Oeste, más concretamente en la zona de Totó, Vega de Río Palma y Pájara. Ya entre 1989 y 2012, se mantiene algún descenso significativo (> 25m) en la zona de Pájara, pero en general, sólo se a precian descensos significativos en 3 puntos de la red de control de un total de 13 en la ES70FV001 – Masa Oeste.

A falta de datos para a nalizar correctamente la evolución del nivel piezométrico en las masas de aguas subterráneas delimitadas en la DH de Fuerteventura, la comparativa del único dato disponible, que es de 2012, con los registros piezométricos históricos (1983 y 1989), pone de manifiesto que no existe una tendencia general descendente ni ascendente clara en ninguna de las tres masas de aguas subterrá nea con datos. En el Plan Hidrológico de Fuerteventura de 1999 (CIAF, 1999) se ponía de manifiesto que existían zonas en las que sondeos profundos ha bían dejado secos a pozos antiguos someros.

4. CARACTERÍSTICAS DE LA ZONA NO SATURADA

4.1 LITOLOGÍA

La litología de la zona de tránsito es la correspondiente a la descrita en el a partado de características geológicas generales, dependiendo del edificio volcánico en el que nos encontremos.

4.2 ESPESOR

Sin datos

4.3 SUELOS EDÁFICOS

De acuerdo a los criterios de Soil Taxonomy (1998) se pueden identificar tres órdenes de suelos en la isla de Fuerteventura: Aridisoles, Entisoles y Andisoles. También existen formaciones sin suelo, conformadas por materiales volcánicos recientes.

La fertilidad natural de los suelos de la isla es baja debido a la escasa disponibilidad de agua, la elevada salinidad y la deficiencia en algunos nutri entes como nitrógeno y fós foro. Ello, junto con otras características de sus suelos como la elevada pedregosidad, el escaso espesor útil o la pendiente en que se emplazan, determina que sólo un 6,6% de la superficie insular sea apta para una actividad agrícola productiva y aun con ciertas restricciones.

4.4 RED DE SEGUIMIENTO								
Código Estación	Denominación	Tipo	Zona hidroquímica	Seguimiento Cuantitativo	Seguimiento Químico	Programa		
1220003	Sondeo nº 3. Corra lejo	Sondeo	ZH2	Si	Si	Operativo		
1220004	Pozo nº 4	Pozo	ZH2	Si	Si	Operativo		
1220008	Pozo nº 8	Pozo	ZH2	Si	Si	Operativo		
1220009	Sondeo nº9	Sondeo	ZH2	Si	Si	Operativo		
1220010	Pozo nº 10. La Matilla	Pozo	ZH1	Si	Si	Operativo		
1220013	Pozo nº 13. El Durazno	Pozo	ZH1	Si	Si	Operativo		
1220014	Sondeo nº 14	Sondeo	ZH2	Si	Si	Operativo		
1220015	Pozo nº 15	Pozo	ZH1	Si	Si	Operativo		
1220016	Pozo nº 16. Valle de Santa Inés	Pozo	ZH1	Si	Si	Operativo		
1220017	Sondeo nº 17. Vega de Río Palmas	Sondeo	ZH1	Si	Si	Operativo		
1220018	Sondeo nº 18	Sondeo	ZH2	Si	Si	Operativo		
1220019	Pozo nº 19	Pozo	ZH2	Si	Si	Operativo		
1220033	Sondeo nº 33	Sondeo	ZH2	Si	Si	Operativo		
1220034	Pozo nº 34. Toto	Pozo	ZH2	Si	Si	Operativo		
1220035	Sondeo nº 35. Cortijo de Tetuí- Toto	Sondeo	ZH2	Si	Si	Operativo		

5. SISTEMAS DE SUPERFICIE ASOCIADOS Y ECOSISTEMAS DEPENDIENTES

5.1 SISTEMAS A	5.1 SISTEMAS ACUÁTICOS								
TIPO	NOMBRE	TIPO VINCULACIÓN	CÓDIGO	TIPO DE PROTECCIÓN					
Costera	Punta Jandía-Punta del Lago	Flujo al mar	ES70FVTI2						

5.2 ECOSISTEMAS DEPENDIENTES

No se ha i dentificado ningún e cosistema asociado o dependiente de las aguas subterráneas en la masa ES70FV001.

6. BALANCE HÍDRICO

6.1 BALANCE HÍDRICO

Volumen extraído (hm³/año)	Aproximación a los recursos disponibles (hm³/año)	Índice de explotación (Extracciones/Recursos)
1,09	3,7	0,3

A partir del tratamiento de los datos históricos de las variables climáticas correspondientes al periodo 1980/81-2011, para esta masa de agua se obtuvieron valores de precipitación, evapotranspiración real, escorrentía superficial y recarga de 115, 110, 0,6 y 3,6 hm³/año, respectivamente.

6.2 OBSERVACIONES SOBRE EL BALANCE

Los datos de extracciones se estiman en función del volumen captado por las EDAS.

7. EXPLOTACIÓN DE LAS AGUAS SUBTERRÁNEAS

7.1 APROVECHAMIENTOS						
	APROVECHAMIENTOS (hm³/año)					
Tipo	Número	Funciona	2015			
Pozo	330	36				
Sondeo	33	9				
Otros	3	-				
Galería	-	-				
No inventariadas	967	-				
Nº Obras en la masa	366	45	1,09*			

 $[\]hbox{* Los datos de extracciones se estiman en función del volumen captado por las EDAS.}$

8. HIDROQUÍMICA (Datos 2016-2022) Nº puntos de control: Nº puntos de agua: Solution de caudal) Solution de caudal de cauda

PARÁMETRO	UNIDAD	VALOI (ZONA HIDROC		VALOR UMBRAL	Nº MUESTRAS > VALOR	RD 03/2023	Nº MUESTRAS
	5 1112712	min-máx	Promedio (P)		UMBRAL	Referencia	>RD 03/2023
C.E.	(µS/cm)	1.800 - 8.200	4540	5.500	1	2.500	7
Sílice	mg/l	-	-	-	-	-	-
Calcio	mg/l	9,3 – 210	80	-	-	-	-
Magnesio	mg/l	11 – 190	89	-	-	-	-
Potasio	mg/l	4,4 – 250	56	-	-	-	-
Sodio	mg/l	118 – 1.801	795	-	-	200	9
Amonio	mg/l	0,0 - 0,23	0,045	0,5	1	0,5	0
Bicarbonatos	mg/l	314 – 670	470	-	-	-	-
Cloruros	mg/l	320 – 2.684	1.278	780	1	250	10
Sulfatos	mg/l	57 -440	224	250	1	250	4
Nitratos	mg/l	11-66	34	50	0	50	3
Flúor	mg/l	-	-	1,5	-	1,5	-
Nitrito	mg/l	-	-	0,5	-	0,5	-
Fosfato	mg/l	-	-	-	-	-	-

PARÁMETRO	UNIDAD	VALOI (ZONA HIDRO		VALOR UMBRAL	Nº MUESTRAS > VALOR	RD 03/2023	Nº MUESTRAS	
		min-máx	Promedio (P)		UMBRAL	Referencia	>RD 03/2023	
C.E.	(µS/cm)	3.800 - 46.300	12156	10.000	6	2.500	16	
Sílice	mg/l	-	-	-	-	-	-	
Calcio	mg/l	10-800	194	-	-	-	-	
Magnesio	mg/l	4,2- 948	186	-	-	-	-	
Potasio	mg/l	8,7-600	97	-	-	-	-	
Sodio	mg/l	580- 11.823	2.593	-	-	200	15	
Amonio	mg/l	0,0 - 2	0,32	0,5	3	0,5	2	
Bicarbonatos	mg/l	6,5-880	429	-	-	-	-	
Cloruros	mg/l	770 – 17.892	4.109	2.500	11	250	15	
Sulfatos	mg/l	150-3.500	1.055	2.500	0	250	14	
Nitratos	mg/l	0,0 - 164	43	50	2	50	5	
Flúor	mg/l	-	-	1,5	-	1,5	-	
Nitrito	mg/l	-	-	0,5	-	0,5	-	
Fosfato	mg/l	-	-	-	-	-	-	

	VALORES UMBRAL							
Parámetro	Unidad	Nivel de referencia	Criterio de calidad	Valor umbral	Promedio 2007	Promedio 2012	Promedio 2016	Promedio 2022
Nitratos	mg/l	-	50	50	35	42	44	36
Amonio	mg/l	-	0,5	0,5	0	1,23	0,3	1,19
Fluoruros	mg/l	-	1,5	1,5	0,2	-	-	-
Nitritos	mg/l	-	0,5	0,5	0	-	-	-
Fosfatos	mg/l	-	-	-	-	-	-	-
			ZONA	HIDROQUÍMICA 1				
Cloruros	mg/l	780	250	780	1.570	1.144	1.117	1.439
Sulfatos	mg/l	177	250	250	347	279	229	218
C.E.	μS/cm	5.500	2.500	5.500	5.217	4.656	4.340	4.740
	ZONA HIDROQUÍMICA 2							
Cloruros	mg/l	2.500	250	2.500	4.680	3.419	4.411	3.908
Sulfatos	mg/l	2.500	250	2.500	1.238	785	1.065	1.049
C.E.	μS/cm	10.000	2.500	10.000	13.400	11.215	13.571	11.055

Incumplimientos y valoración del periodo 2016-2022

En la masa de agua subterránea ES70FV001, se han detectado concentraciones que exceden el valor umbral para nitratos (50 mg/L) en 4 de las 14 estaciones de control, con los mayores valores registrados en el punto 1220033 Además, otros cuatro puntos (tres en la zona hidroquímica 1 y uno en la zona hidroquímica 2) registran concentraciones superiores a los valores umbrales de cloruros y con ductividad eléctrica, además de sulfatos en tres de ellos.

IMPACTO		PRESIÓN		
1.1 Contaminación por Nutrient	es 2.6 Fuentes difusas - Ve	ertidos no conectados a las redes de	saneamiento	11 Desarrollo Urbano
1 4 Cantaminación calina / Intru	3.1 Extracción / Desvío	- Agri cultura		1 Agricultura
1.4 Conta minación salina / Intru	3.2 Extracción / Desvío	3.2 Extracción / Desvío - Abastecimiento		
8.2 ESTADO DE LA MASA D	DE AGUA			
	Bueno	Malo		
ESTADO CUANTITATIVO		ESTADO	QUÍMICO	
Bueno	Malo	Bueno	Malo	

9. OBJETIVOS MEDIOAMBIENTALES

Evitar o limitar la entrada de contaminantes y el deterioro del estado de la masa de agua subterránea, e invertir toda tenden da significativa y sostenida al aumento de la concentración de cualquier contaminante debido a la actividad humana.

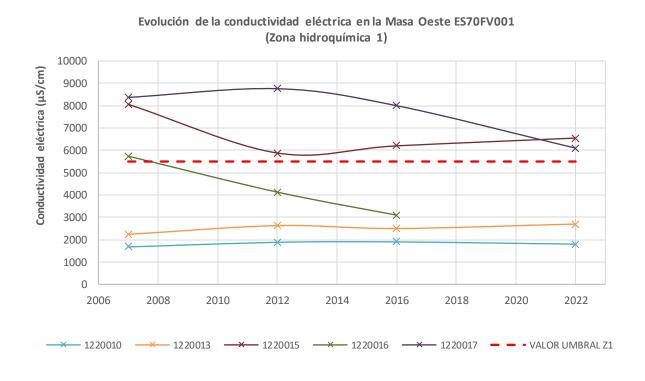
PRÓRROGAS

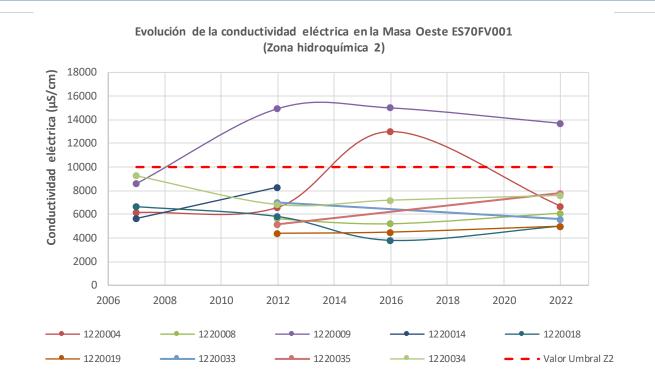
En el caso de la contaminación difusa, se observa que la respuesta de las aguas subterráneas a las medidas programadas para corregir la situación y tratar de invertir tendencias es muy lenta, lo que justifica, cuanto menos, la solicitud de prórrogas.

En consecuencia, se plantea una solicitud de prórroga en el cumplimiento de los objetivos medioambientales de la masa de agua subterránea ES70FV001-Masa Oeste al horizonte 2033, que deberá ser revisada en el 2027 sobre la base de los nuevos datos disponibles.

OBJETIVOS MENOS RIGUROSOS

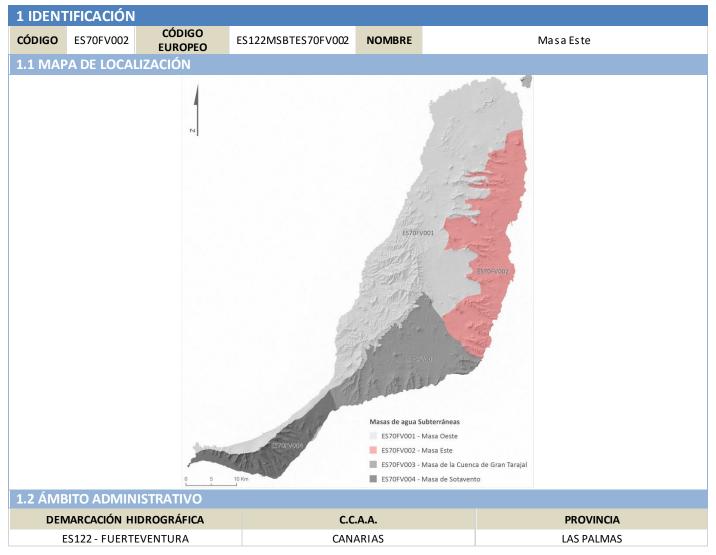
No se han establecido para la masa de agua objetivos medioambientales menos rigurosos.


10. DETERMINACIÓN DE TENDENCIAS CONTAMINANTES


DETERMINAC	DETERMINACIÓN DE TENDENCIAS Y DEFINICIÓN DE PUNTOS DE PARTIDA DE INVERSIONES DE TENDENCIAS								
PARÁMETRO	Nº		EL PARÁME	TRO (ppm)	Perío	do (2007-20	022)	Punto de partida de inversión	
PARAIVIETRO	ESTACIONES/ Nº MUESTRAS	máximo	mínimo	promedio	Perc. 25	Perc. 75	Perc. 90	de tendencia (% valor	umbral)
Nitratos	5/10	66	11	34	20,25	52,25	65,7	37,5 ppm	(75%)
ZONA HIDROQUÍMICA 1									
Cloruros	5/10	2.684	320	1.278	510	2.202	2.627	550	(75%)
Sulfatos	5/10	440	57	224	86	419	579	550	(75%)
Conductividad	5/10	8.200	1.800	4.540	2.305	7.550	8.353	3.750 μS/cm	(75%)
	ZONA HIDROQUÍMICA 2								
Cloruros	9/15	17.892	770	4.109	1.491	2.911	17.600	1.875 ppm	(75%)
Sulfatos	9/15	3.500	150	1.055	451	1.411	2.666	1.875 ppm	(75%)
Conductividad	9/16	46.300	3.800	12.156	5.605	12.062	43.470	7.500 μS/cm	(75%)

En el tercer ciclo de planificación, la masa de ES70FV001 – Masa Oeste continúa en mal estado químico debido a los incumplimientos en el contenido de nitratos y parámetros de salinidad.

En el caso de los nitratos, aunque el promedio no supera el valor umbral, se registran incumplimientos en cua tro puntos de control, siendo es pecialmente elevado en uno los puntos (1220033), lo que no permite considerar una mejoría del estado de la masa.


Respecto a los parámetros de salinidad medidos en la zona hidroquímica 1, se observa cierta tendencia a la estabilización con respecto los a nteriores ciclos de planificación -tal como se muestra en el siguiente gráfico para el caso de la conductividad eléctrica- aunque tales valores no descienden hasta el punto de partida considerado para la inversión de tendencia con respecto a su valor umbral (75%).

En cuanto a los parámetros de salinidad de la zona hidroquímica 2, se constata que, para el caso de la conductividad eléctrica y los cloruros, la mayoría de las mediciones se sitúan por debajo del umbral, aunque los promedios anuales no descienden hasta el 75% del valor umbral indicativo de la inversión de tendencias, lo cual es debido a los eleva dos valores registrados en dos puntos de control. En cambio, para el caso de los sulfatos los valores promedio se sitúan por debajo del 75% del valor umbral, lo cual indica una inversión de tendencia favorable a la disminución de este parámetro.

2.- FICHA DE CARACTERIZACIÓN ADICIONAL DE LA MASA DE AGUA SUBTERRÁNEA ES122MSBTES70FV002

1.3 CAR	1.3 CARACTERIZACIÓN FUNCIONAL Y TERRITORIAL							
COORDENADAS		ÁREA TOTAL DE LA MASA	LONGITUD	PERÍMETRO	ALTITUD (m s.n.m.)			
CEN	TROIDE	(km²)	COSTA (km)	(km)	Máxima	Mínima		
X: 607.429	Y: 3.148.433	357,95	-	183,97	596,5	0		
	RFICIE MASA FIVO (2014)	5,73						

	SECTOR	NOMBRE
	С	Llanura Central
ZONIFICACIÓN	Este 1 baja	Área baja del Sector 1 de la Zona Este (cuenca del Bco. de Las Pilas hasta la divisoria de Cuesta del Cuchillo) por debajo de la cota 100 m
HIDROGEOLÓGICA	Este 1 alta	Área a lta del Sector 1 de la Zona Este (cuenca del Bco. de Las Pi las hasta la divisoria de Cuesta del Cuchillo) por encima de la cota 100 m
	Este 2	Sector 2 de la Zona Este

ESTRUCTURA GEOHIDROLÓGICA DOMINANTE

Las rocas con mayor interés hidrogeológicos on los Basaltos de la Serie I, que es de donde se extrae la mayor parte del agua subterránea, y los materiales aluviales de los barrancos principales.

NOMBRE MUNICIPIO	% ÁREA MUNICIPIO INCLUIDA EN MASA	% ÁREA MUNICIPIO RESPECTO TOTAL MASA	
La Oliva	17,53	17,53	
Pto. Del Rosario	51,29	41,96	
Antigua	51,37	36,07	

NOMBRE MUNICIPIO	% ÁREA MUNICIPIO INCLUIDA EN MASA	% ÁREA MUNICIPIO RESPECTO TOTAL MASA
Tuineje	5,7	4,43

1.4 POBLACIÓN ASENTADA				
TIPO DE POBLACIÓN	Nº DE HABITANTES EN EL ENTORNO DE LA MASA	CENSO		
De derecho	51.780	INE (2022)		

1.5 ZONAS PROTEGIDAS REGISTRADAS EN LA MASA DE AGUA

Protección de hábitat/especies

CÓDIGO	DENOMINACIÓN
ES0000096	Pozo Negro
ES7010032	Corralejo
CÓDIGO	DENOMINACIÓN
CÓDIGO ES122ENPFV002	DENOMINACIÓN Parque Natural de Corralejo

Red Canaria de Espacios Naturales Protegidos

2. CARACTERÍSTICAS GEOLÓGICAS GENERALES

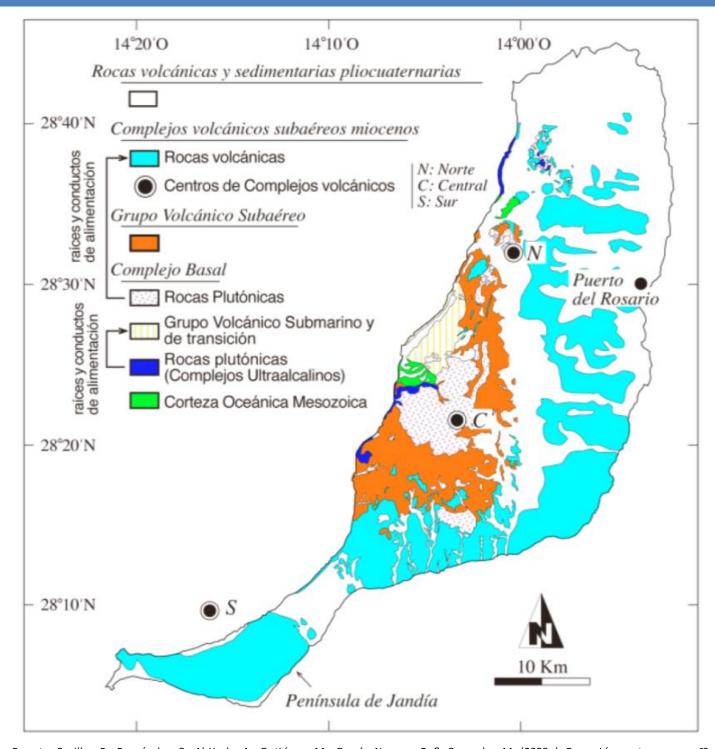
2.1 ÁMBITO GEOESTRUCTURAL

La geomorfología estructural de la isla de Fuerte ventura, aparece condicionada por la antigüedad de sus materiales, observándose formas vol cánicas directas, formas vol cánicas derivadas (diques exhumados, necks y cuchillos) y formas alomadas asociadas al Complejo Basal.

En su conjunto, la configuración morfoestructural de la Isla obedece a su larga evolución geológica y a la construcción en dos grandes etapas de formación: la que conforma el Complejo Basal y la correspondiente a la actividad volcánica subaérea.

2.2 COLUMNA VOLCANOESTRATIGRÁFICA

COLUMNA LITOLÓGICA TIPO GENERAL (fuente: SPA-15, 1975			
LITOLOGÍA	FORMACIÓN	POTENCIA (m)	EDAD GEOLÓGICA	OBSERVACIONES
Conos de cínder y tobas, lavas "aa" y "pahoe- hoe"	Basaltos Recientes y Sub-Recientes (Serie IV)	Pocos metros	0-0,8 Ma	Bas altos alcalinos-olivínicos
Cráteres pirodásticos. Superficies de cráteres cubiertas por caliche.	Volcanes del Cuaternario Superior (Seri e III)	Pocos metros	1,7-1,8 Ma	Bas altos alcalinos-olivínicos
Volca nes en escudo y campos de lava asociados. Paleo-playas y paleo-dunas	Basaltos Cuaternarios (Serie II)	Decenas de metros	2,4-2,9 Ma	Basaltos alcalinos-olivínicos
Basaltos sub-horizontales, conos enterados, aglomerados de nube ardiente, diques. Piroclastos principalmente, conos enterados, diques.	Basaltos Antiguos (Serie I)	300-600 (máx 800m)	Mio-Plioceno	Basaltos alcalinos- olivínicos. Similar a Gran Canaria y Tenerife.
Diques basálticos Diques a nulares en rocas plutónicas (sieníticos)		Hasta 700m s.n.m.	Terciario Inferior y Medio	Similar a La Palma y Gomera
Rocas plutónicas; piroxenos, gabros, dioritas	Commissio Bossi	-	-	
La va s basálticas almohadilladas	Complejo Basal	Centenares de metros	Mesozoico Cretáceo Superior	Plegado y atravesado por diques
Rocas s edimentarias, calizas, a reniscas, etc.		-	-	


2.3 DESCRIPCIÓN GEOLÓGICA

Los materiales geológicos que constituyen la isla de Fuerteventura se pueden agrupar en tres grandes dominios: Complejo Basal, Post-Complejo Basal y formaciones sedimentarias recientes.

El complejo basal está esencialmente representado por un conjunto de materiales volcánicos submarinos (Oligoceno) apoyados so bre un fragmento de corteza oceánica de edad Jurásico inferior-Cretácico inferior y medio, que se encuentran intruidos por una secuencia de cuerpos plutónicos y un importante haz filoniano (Casillas et al, 2008), del oligoceno superior-Mioceno.

Los materiales del Post-Complejo Basal se corresponden con la fase de construcción subaérea de la isla y han sido agrupados tradicionalmente en las series basálticas o volcánicas (según autores) I, II, III y IV

Las formaciones sedimentarias recientes, que son la última unidad estratigráfica generada en la isla, se han conformado funda mentalmente en el holoceno. Según la descripción del ITGE (1990), se diferencian depósitos de rambla (en la red fluvial), conos de deyección (abanicos de derrubios de ladera), sedimentos la custres (limos y arcillas de relleno de pequeñas cuencas endorreicas), formaciones de 'caliches' y depósitos de playas de arena.

Fuente: Casillas, R.; Fernández, C.; Ahijado, A., Gutiérrez, M.; García-Navarro, E. & Camacho, M. (2008a). Excursión postcongreso nº2: Crecimiento temprano y evolución tectónica de la Isla de Fuerteventura. En: Pérez-Torrado, F. y Cabrera, M.C. (Ed). Itinerarios Geológicos por las Islas Canarias: Fuerteventura, Lanzarote, La Gomera y El Hierro. Sociedad Geológica de España. Geoguías, 6: 59-86.").

3. CARACTERÍSTICAS HIDROGEOLÓGICAS

3.1 LÍMITES HIDROGEOLÓGICOS DE LA MASA

Al Norte y Oeste el sistema a cuífero abierto de la masa de a gua subterránea limita con la masa de a gua subterrá nea ES70FV001-Masa Oeste, si endo el sentido de flujo de salida al mar. Limita al Sur con la masa de a gua ES70FV003-Masa de la Cuenca de Gran Tarajal y al Este con el océa no Atlántico.

3.2 NATURALEZA DEL ACUÍFERO

Se definen dos tipos acuíferos: insular (asociado a series antiguas) y someros (asociados a formaciones sedimentarias cuatemarias y a formaciones sedimentarias modernas). Estos acuíferos en general funcionan de forma independiente, pero en algunos puntos, por su ubicación, están conectados con el acuífero insular. Las rocas con mayor interés hidrogeológico son los Basaltos de la Serie I, que es de donde se extrae la mayor parte del agua subterránea, y los materiales aluviales de los barrancos principales.

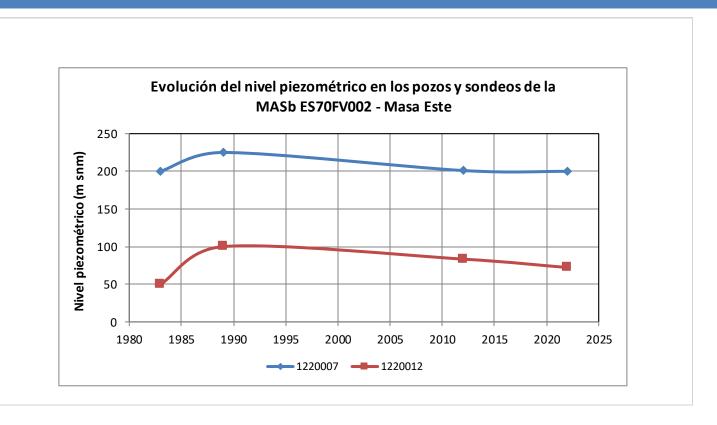
El comportamiento hidrogeológico es anisótropo. Los acuíferos muestran en general malas características hidrogeológicas debido a la aridez del clima (baja potencia saturada) y baja permeabilidad de los materiales. Gran parte de la recarga se produce ligada a la precipitación asociada a las zonas de mayor altitud y las gavias en la falda de las mismas, o en zonas susceptibles de recoger el agua mediante caños y conducirla hasta las gavias. Las gavias en uso actúan como verdaderas balsas de recarga. Se estima que reciben un aporte adicional de 200 mm, al que ha de sumarse la pluviometría correspondiente. Las aguas de recarga tienen un alto contenido en sales principalmente por efecto de la aridez climática. En general la salinidad aumenta con la profundidad, que se atribuye a la interacción agua-roca y, en algunos sectores, a la mezcla con agua marina relicta (Herrera 2001).

Como singularidad cabe destacar la existencia de cuencas cerradas por materiales muy permeables, que permiten una circulación subsuperficial, como en el caso del Malpaís de Pozo Negro. También es singular, por su funcionamiento hidrológico, el caso de la zona endorreica de los alrededores de Lajares-La Oliva o el malpaís de la Cordillera del Bayuyo en el extremo norte.

No se descarta la posibilidad de que existan reservas en la Península de Jandía y en el macizo de La Muda-Aceitunal. Estas reservas tendrían la consideración de recursos no renovables o difícilmente renovables.

3.3 MAGNITUDES GEOHIDROLÓGICAS DE REFERENCIA (Fuente: Herrera, 2001-Macizo de Betancuria)

FORMACIÓN GEOLÓGICA	PERMEABIL	IDAD (m/día)	TRANSMISIVIDAD (m²/día)		
TORNIACION GEOLOGICA	Min.	Max.	Min.	Max.	
Basaltos Miocenos (lavas)	0,009	1,2	-	-	
La va s submarinas del Complejo Basal	0,1	0,3	-	-	
Roca s intrusivas del Compleio Basal	-	-	47	114	


La principal característica hidrogeológica del conjunto insular es su anisotropía, que genera variaciones muy grandes (de hasta cuatro órdenes de magnitud) de los principales parámetros hidrogeológicos. La permeabilidad y la porosidad generalmente se encuentran asociadas a los tra mos escoriáceos de coladas y de pósitos piroclásticos poco compactados, y a coladas fracturadas generalmente por grietas de retracción. Los tra mos impermeables pueden corresponder a coladas donde los poros y fisuras no están conectados, ciertos niveles de tobas y almagres. Los diques pueden actuar como barreras impermeables o como drenes permeables si están suficientemente fracturados, favorecien do en general el drenaje vertical frente al horizontal debido a su disposición. El paso del tiempo empobrece las características hidrogeológicas por alteración (generación de minerales arcillosos que puedan rellenar o sellar grietas) y por compactación por el peso en profun didad (ITGE, 1990). Ta mbién e ncostramientos minimizan de forma drástica la permeabilidad.

3.4 PIEZOMETRÍA

El flujo es asimétrico, con gradientes muy bajos en algunas zonas (principalmente en la Llanura Central). En toda la costa noroeste se producen des cargas próximas a la costa y con un contenido en sales elevado. Los nacientes situados en la cara norte de la península de Jandía y, en general, los situados en las cabeceras de los barrancos tienen mejor calidad relativa. Y por otra parte, cabe destacar la práctica desconexión hidrogeológica de la Península de Jandía del resto de la isla.

A falta de datos para a nalizar correctamente la evolución del nivel piezométrico en las masas de aguas subterráneas delimitadas en la DH de Fuerteventura, la comparativa del único dato disponible en el ci do de planificación hidrológica (2012) con los registros pie zométricos históricos (1983 y 1989), pone de manifiesto que no existe una tendencia general descendente ni ascendente clara en ninguna de las tres masas de aguas subterránea con datos. En el Plan Hidrológico de Fuerteventura de 1999 (CIAF, 1999) se ponía de manifiesto que existían zonas en las que sondeos profundos habían dejado secos a pozos antiguos someros.

Sólo se disponen de algunas medidas de niveles piezométricos a los años 1983, 1989, 2012 y 2022, en tan solo dos de los puntos de la red de control de la masa ES70FV002-Masa Este, cuya re presentación gráfica es la siguiente:

4. CARACTERÍSTICAS DE LA ZONA NO SATURADA

Sondeo nº11. Tetir

Pozo nº12. Guisguey

4.1 LITOLOGÍA

La litología de la zona de tránsito es la correspondiente a la descrita en el apartado de características geológicas generales, dependiendo del edificio volcánico en el que nos encontremos.

4.2 ESPESOR

1220011

1220012

Sin datos

4.3 SUELOS EDÁFICOS

De acuerdo a los criterios de Soil Taxonomy (1998) se pueden identificar tres órdenes de suelos en la isla de Fuerteventura: Aridisoles, Entisoles y Andisoles. También existen formaciones sin suelo, conformadas por materiales volcánicos recientes.

La fertilidad natural de los suelos de la isla es baja debido a la escasa disponibilidad de agua, la elevada salinidad y la deficiencia en algunos nutri entes como nitrógeno y fósforo. Ello, junto con otras características de sus suelos como la elevada pedregosidad, el escaso espesor útil o la pendiente en que se emplazan, determina que sólo un 6,6% de la superficie insular sea apta para una actividad agrícola productiva y aun con ciertas restricciones.

4.4 RED DE SEGUIMIENTO Seguimiento Seguimiento Zona Denominación Código Estación Tipo Programa hidroquímica Cuantitativo Químico 1220001 Sondeo nº1 Sondeo ZH2 Si Si Operativo Sondeo nº2. Fimapaire Si Operativo 1220002 Sondeo ZH2 Si Sondeo nº6. Tesjuate 1220006 Sondeo ZH2 Si Si Operativo Pozo nº7 1220007 Pozo ZH2 Si Si Operativo

ZH2

ZH2

Si

Si

Si

Si

Operativo

Operativo

Sondeo

Pozo

4.5 Nº DE PUNTOS DE LAS REDES DE CONTROL					
PROGRAMA DE CONTROL Y SEGUIMIENTO DEL ESTADO CUANTITATIVO	PROGRAMA DE CONTROL Y SEGUIMIENTO QUÍMICO				
Red de muestreo: 6	Control de vigilancia: Control operativo: 6				

5. SISTEMAS DE SUPERFICIE ASOCIADOS Y ECOSISTEMAS DEPENDIENTES

5.1 SISTEMAS ACUÁTICOS									
TIPO	NOMBRE	TIPO VINCULACIÓN	CÓDIGO	TIPO DE PROTECCIÓN					
Costera	Punta Jandía-Punta del Lago	Flujo al mar	ES70FVTI2						
Costera	Punta del Lago-Caleta del Espino	Flujo al mar	ES70FVT12						
Costera	Caleta del Es pino-Punta Entallada	Flujo al mar	ES70FVTI2						

5.2 ECOSISTEMAS DEPENDIENTES

No se ha i dentificado ningún e cosistema asociado o dependiente de las aguas subterráneas en la masa ES70FV002.

6. BALANCE HÍDRICO

6.1 BALANCE HÍDRICO

Volumen extraído (hm³/año)	Aproximación a los recursos disponibles (hm³/año)	Índice de explotación (Extracciones/Recursos)
0,3	5,7	0,04

A partir del tratamiento de los datos históricos de las variables climáticas correspondientes al periodo 1980/81-2017/18, para esta masa de agua se obtuvieron valores de precipitación, eva potranspiración real, escorrentía superficial y recarga de 42,1, 41, 0,0 y 1,0 hm³/año, respectivamente.

6.2 OBSERVACIONES SOBRE EL BALANCE

Los datos de extracciones se estiman en función del volumen captado por las EDAS.

7. EXPLOTACIÓN DE LAS AGUAS SUBTERRÁNEAS

7.1 APROVECHAMIENTOS								
	Nº DE OBRAS	APROVECHAMIENTOS (hm³/año)						
Tipo	Número	2015						
Pozo	5	2						
Sondeo	6	4						
Otros	-	-						
Galería	-	-						
No inventariadas	326	-						
Nº Obras en la masa	11	6	0,27*					

^{*}Los da tos de extracciones se estiman en función del volumen captado por las EDAS.

8. HIDROQUÍMICA (Datos 2016 - 2022)

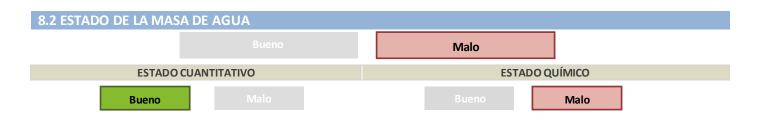
6

Nº puntos de control:

% obras muestreadas con agua:

% (% del caudal) Densidad media muestreo:

1 punto cada 59,65 km²


PARÁMETRO	UNIDAD	VALORES		VALOR UMBRAL	Nº MUESTRAS > VALOR	RD 03/2023	Nº MUESTRAS	
.,	01112712	min-máx	Promedio (P)	TALON ON BINA	UMBRAL	Referencia	>RD 03/2023	
C.E.	(µS/cm)	2.700 - 25.000	12.633	10.000	5	2.500	10	
Sílice	mg/l	-	-	-	-	-	-	
Calcio	mg/l	84 – 290	195,8	-	-	-	-	
Magnesio	mg/l	19 – 450	237,45	-	-	-	-	
Potasio	mg/l	7 – 440	75	-	-	-	-	
Sodio	mg/l	443 – 5.355	2170	-	-	200		
Amonio	mg/l	0,0 – 0,55	0,26	0,5	2	0,5	2	
Bicarbonatos	mg/l	221 – 480	369	-	-	-	-	
Cloruros	mg/l	820 – 7.600	3.824	2.500	7	250	10	
Sulfatos	mg/l	90 – 2.000	746	2.500	0	250	9	
Nitratos	mg/l	0 – 96	43,7	50	4	50	4	
Flúor	mg/l	-	-	1,5	-	1,5	-	
Nitrito	mg/l	-	-	0,5	-	0,5	-	
Fosfato	mg/l	-	-	-	-	-	-	

	VALORES UMBRAL									
Parámetro	Unidad	Nivel de referencia	Criterio de calidad	Valor umbral	Promedio 2007	Promedio 2012	Promedio 2016	Promedio 2022		
Nitratos	mg/l	-	50	50	48	45	66	26		
Amonio	mg/l	-	0,5	0,5	-	0,1	0,2	0,2		
Cloruros	mg/l	2.500	250	2.500	3.124	2.981	4242	3052		
Fluoruros	mg/l	-	1,5	1,5	0,98	-	-	-		
Sulfatos	mg/l	2.500	250	2.500	740	754	1114	418		
C.E.	μS/cm	10.000	2.500	10.000	9.768	10.913	14.220	9.540		
Nitritos	mg/l	-	0,5	0,5	-	-	-	-		
Fosfatos	mg/l	-	-	-	-	-	-	-		

Incumplimientos y valoración del periodo 2016-2022

En el tercer ciclo de planificación, la masa ES70FV002 presenta dos puntos de muestreo en buen estado químico, mientras que los cuatro restantes exceden el valor umbral de nitratos, si bien el promedio del último año es inferior al valor umbral. En los mismos cuatro puntos de control se supera también el umbral de cloruros y/o conductividad eléctrica definidos para la zona hidroquímica 2, mientras que los sulfatos perma necen por debajo de su valor umbral.

8.1 EVALUACIÓN DEL RIESGO – ANÁLISIS DPSIR							
IMPACTO	PRESIÓN	DRIVER					
1.1 Contaminación por Nutrientes	2.6 Fuentes difusas - Vertidos no conectados a las redes de saneamiento	11 Desarrollo Urbano					
1 4 Contaminación colina / Intrución	3.1 Extracción/Desvío - Agricultura	1 Agricultura					
1.4 Contaminación salina / Intrusión	3.2 Extracción / Desvío - Abastecimiento	11 Desarrollo Urbano					

9. OBJETIVOS MEDIOAMBIENTALES

Evitar o limitar la entrada de contaminantes y el deterioro del estado de la masa de agua subterránea, e invertir toda tendencia significativa y sostenida al aumento de la concentración de cualquier contaminante debido a la actividad humana.

PRÓRROGAS

En el caso de la contaminación difusa, se observa que la respuesta de las aguas subterrá neas a las medidas programadas para corregir la situación y tratar de invertir tendencias es muy lenta, lo que justifica, cuanto menos, la solicitud de prórrogas.

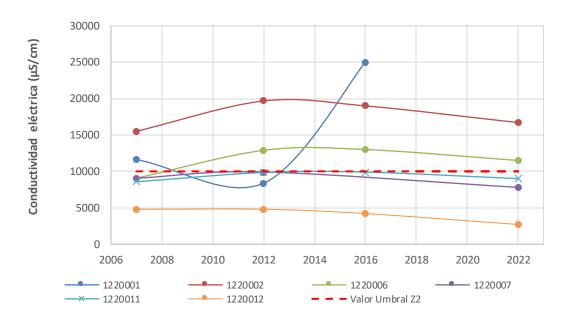
En consecuencia, se plantea una solicitud de prórroga en el cumplimiento de los objetivos medioambientales de la masa de agua subterránea ES70FV002-Masa Este al horizonte 2033, que deberá ser revisada en el 2027 sobre la base de los nuevos datos disponibles.

OBJETIVOS MENOS RIGUROSOS

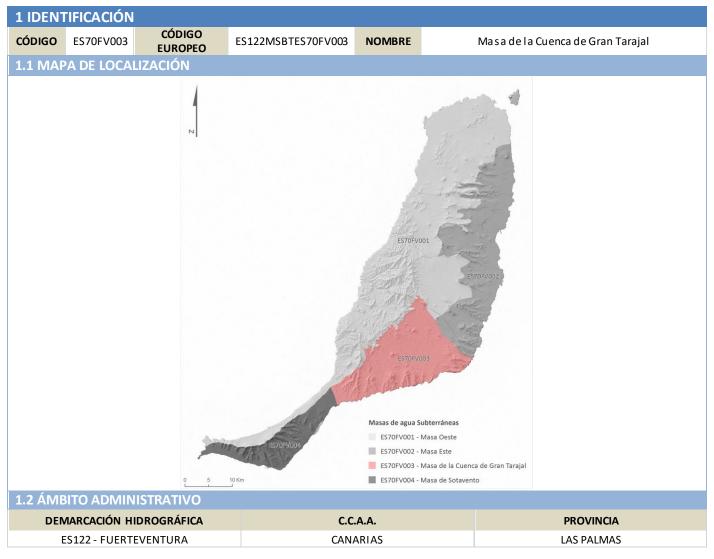
No se han establecido para la masa de agua objetivos medioambientales menos rigurosos.

10. DETERMINACIÓN DE TENDENCIAS CONTAMINANTES

DETERMINACIÓN DE TENDENCIAS Y DEFINICIÓN DE PUNTOS DE PARTIDA DE INVERSIONES DE TENDENCIAS


	Nº .	VALOR DEL PARÁMETRO (ppm)			Período (2007-2022)			2	
PARÁMETRO	ESTACIONES/ Nº MUESTRAS	máximo	mínimo	promedio	Perc. 25	Perc. 75	Perc. 90	Punto de partida de in de tendencia (% valor	
Nitratos	6/10	96	0	46	35	56	77	37,5 ppm	(75%)
Cloruros	6/10	7.600	820	3.647	2.368	4.173	6.314	1.875 ppm	(75%)
Sulfatos	6/10	2.000	90	766	430	1.106	1.449	1.875 ppm	(75%)
Conductividad	6/10	25.000	2.700	11.880	8.227	13.627	19.469	7.500 μS/cm	(75%)

En el tercer ciclo de planificación, la masa de ES70FV002 – Masa Este continúa en mal estado químico debido a los incumplimientos en el contenido de nitratos y parámetros de salinidad.


En el caso de los nitratos, aunque el promedio no supera el valor umbral, en el tercer ciclo de planificación se registran incumplimientos en cuatro puntos de control, lo que no permite considerar una mejoría del estado de la masa.

Respecto a los parámetros de salinidad, y en concreto para el caso de la conductividad eléctrica, se observa cierta tendencia a la disminución con respecto los anteriores ciclos de planificación -tal como se muestra en el siguiente gráfico para el caso de la conductividad eléctrica-, con la excepción de un punto de control con mediciones hasta 2016, cuya tendencia hasta ese momento era ascendente. No obstante, el promedio a nual y por ciclo hidrológico se sitúan a ún bastante por encima del 75% del umbral (zona hidroquímica 2) el punto de partida para considerar una inversión de tendencia.

Para el caso de los sulfatos, en cambio, no se supera valor umbral de 2.500 mg/l en ninguna de las mediciones realizadas, con promedios por debajo del 75% en todos los ciclos de planificación.

3.- FICHA DE CARACTERIZACIÓN ADICIONAL DE LA MASA DE AGUA SUBTERRÁNEA ES122MSBTES70FV003

1.3 CAR	1.3 CARACTERIZACIÓN FUNCIONAL Y TERRITORIAL									
COOR	COORDENADAS ÁREA TOTAL DE LA MASA LONGITUD PERÍMETRO ALTITUD (m s.n.m.)									
CEN	TROIDE	(km²)	COSTA (km)	(km)	Máxima	Mínima				
X:	Y:	288,74		107,05	468,1	0				
591.533	3.125.916	200,74	-	107,05	400,1	0				
	% SUPERFICIE MASA EN CULTIVO(2014) 6,76									

	SECTOR	NOMBRE
ZONIFICACIÓN	С	Lla nura Central
HIDROGEOLÓGICA	Este 2	Sector 2 de la Zona Este
ESTRUCTURA GEOHIDROLÓGICA DOMINANTE	'	s hidrogeológicos on los Basaltos de la Serie I, que es de donde se extrae la mayor parte materiales aluviales de los barrancos principales.

NOMBRE MUNICIPIO	% ÁREA MUNICIPIO INCLUIDA EN MASA	% ÁREA MUNICIPIO RESPECTO TOTAL MASA		
Tuineje	85,73	36,24		
Pájara	12,62	16,78		

NOMBRE MUNICIPIO	% ÁREA MUNICIPIO INCLUIDA EN MASA	% ÁREA MUNICIPIO RESPECTO TOTAL MASA		
Antigua	0,93	0,8		

1.4 POBLACIÓN ASENTADA					
TIPO DE POBLACIÓN	Nº DE HABITANTES EN EL ENTORNO DE LA MASA	CENSO			
De derecho	15.375	INE (2022)			

1.5 ZONAS PROTEGIDAS REGISTRADAS EN LA MASA DE AGUA							
Zonas captación abastecimiento a poblaciones	CÓDIGO	DENOMINACIÓN					
	EDAS_016	EDAS Antonio Cabrera Sanabria (Gran Tarajal)					
	EDAS_017	EDAS Fermín Pérez Armas (Teguitar)					
Protección de hábitat/especies	CÓDIGO	DENOMINACIÓN					
	ES7010034	Montaña Cardón					
	ES0000096	Pozo Negro					
	ES7010064	Ancones-Sice					
Red Canaria de Es pacios Naturales Protegi dos	CÓDIGO	DENOMINACIÓN					
	ES122ENPFV005	Monumento Natural de los Cuchillos de Vigán					

2. CARACTERÍSTICAS GEOLÓGICAS GENERALES

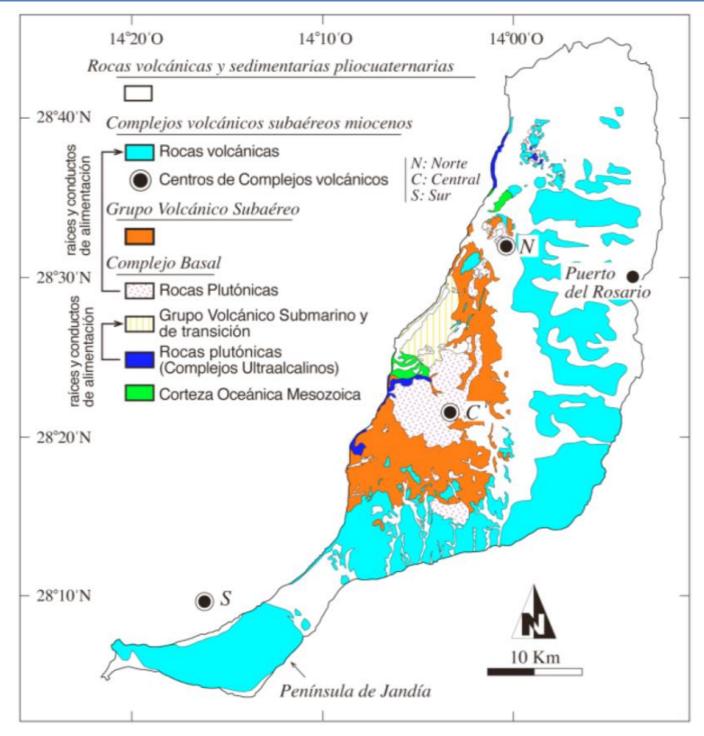
2.1 ÁMBITO GEOESTRUCTURAL

La geomorfología estructural de la isla de Fuerte ventura, aparece condicionada por la antigüedad de sus materiales, observándose formas vol cánicas directas, formas vol cánicas derivadas (diques exhumados, necks y cuchillos) y formas alomadas asociadas al Complejo Basal.

En su conjunto, la configuración morfoestructural de la Isla obedece a su larga evolución geológica y a la construcción en dos grandes etapas de formación: la que conforma el Complejo Basal y la correspondiente a la actividad volcánica subaérea.

2.2 COLUMNA VOLCANOESTRATIGRÁFICA

COLUMNA LITOLÓGICA TIPO GENERAL (fuente: SPA-15, 1975)								
LITOLOGÍA	FORMACIÓN	POTENCIA (m)	EDAD GEOLÓGICA	OBSERVACIONES				
Conos de cínder y tobas, lavas "aa" y "pahoe- hoe"	Basaltos Recientes y Sub-Recientes (Serie IV)	Pocos metros	0-0,8 Ma	Basaltos alcalinos-olivínicos				
Cráteres pirodásticos. Superficies de cráteres cubi ertas por caliche.	Volcanes del Cuaternario Superior (Seri e III)	Pocos metros	1,7-1,8 Ma	Basaltos alcalinos-olivínicos				
Vol ca nes en escudo y ca mpos de lava asociados. Pa le o-playas y pa leo-du nas	Basaltos Cuaternarios (Serie II)	Decenas de metros	2,4-2,9 Ma	Basaltos alcalinos-olivínicos				
Basaltos sub-horizontales, conos enterados, aglomerados de nube ardiente, diques. Piroclastos principalmente, conos enterados, diques.	Basaltos Antiguos (Serie I)	300-600 (máx 800m)	Mio-Plioceno	Basaltos alcalinos- olivínicos. Similar a Gran Canaria y Tenerife.				
Di ques basálticos Di ques a nulares en rocas plutónicas (sieníticos)		Hasta 700m s.n.m.	Terciario Inferior y Medio	Similar a La Palma y Gomera				
Rocas plutónicas; piroxenos, gabros, dioritas	Commissio Bossi	-	-					
La va s basálticas almohadilladas	Complejo Basal	Centenares de metros	Mesozoico Cretáceo Superior	Plegado y atravesado por diques				
Rocas s edimentarias, calizas, a reniscas, etc.		-	-					


2.3 DESCRIPCIÓN GEOLÓGICA

Los materiales geológicos que constituyen la isla de Fuerteventura se pueden agrupar en tres grandes dominios: Complejo Basal, Post-Complejo Basal y formaciones sedimentarias recientes.

El complejo basal está esencialmente representado por un conjunto de materiales volcánicos submarinos (Oligoceno) apoyados so bre un fragmento de corteza oceánica de edad Jurásico inferior-Cretácico inferior y medio, que se encuentran intruidos por una secuencia de cuerpos plutónicos y un importante haz filoniano (Casillas et al, 2008), del oligoceno superior-Mioceno.

Los materiales del Post-Complejo Basal se corresponden con la fase de construcción subaérea de la isla y han sido agrupados tradicionalmente en las series basálticas o volcánicas (según autores) I, II, III y IV

Las formaciones sedimentarias recientes, que son la última unidad estratigráfica generada en la isla, se han conformado funda mentalmente en el holoceno. Según la descripción del ITGE (1990), se diferencian depósitos de rambla (en la red fluvial), conos de deyección (abanicos de derrubios de ladera), sedimentos la custres (limos y arcillas de relleno de pequeñas cuencas endorreicas), formaciones de 'caliches' y de pósitos de playas de arena.

Fuente: Casillas, R.; Fernández, C.; Ahijado, A., Gutiérrez, M.; García-Navarro, E. & Camacho, M. (2008a). Excursión postcongreso nº2: Crecimiento temprano y evolución tectónica de la Isla de Fuerteventura. En: Pérez-Torrado, F. y Cabrera, M.C. (Ed). Iti nerarios Geológicos por las Islas Canarias: Fuerteventura, Lanzarote, La Gomera y El Hierro. Sociedad Geológica de España. Geoguías, 6: 59-86.").

3. CARACTERÍSTICAS HIDROGEOLÓGICAS

3.1 LÍMITES HIDROGEOLÓGICOS DE LA MASA

Al Este el sistema acuífero abierto de la masa de agua subterránea limita con el océano Atlántico, siendo el senti do de flujo de salida al mar. Limita al Oeste con la masa de agua ES70FV002-Masa Oeste, al Sur con la masa de agua ES70FV004-Masa de Sotavento (límite superior del istmo de La Pared), y al Norte con la masa ES70FV002-Masa Este y parte de la masa ES70FV001-Masa Oeste.

3.2 NATURALEZA DEL ACUÍFERO

Se definen dos tipos acuíferos: insular (asociado a series antiguas) y someros (asociados a formaciones sedimentarias cuatemarias y a formaciones sedimentarias modernas). Estos acuíferos en general funcionan de forma independiente, pero en algunos puntos, por su ubicación, están conectados con el acuífero insular. Las rocas con mayor interés hidrogeológico son los Basaltos de la Serie I, que es de donde se extrae la mayor parte del agua subterránea, y los materiales aluviales de los barrancos principales.

El comportamiento hidrogeológico es anisótropo. Los acuíferos muestran en general malas características hidrogeológicas debido a la aridez del clima (baja potencia saturada) y baja permeabilidad de los materiales. Gran parte de la recarga se produce ligada a la precipitación asociada a las zonas de mayor altitud y las gavias en la falda de las mismas, o en zonas susceptibles de recoger el agua mediante caños y conducirla hasta las gavias. Las gavias en uso actúan como verdaderas balsas de recarga. Se estima que reciben un aporte adicional de 200 mm, al que ha de sumarse la pluviometría correspondiente. Las aguas de recarga tienen un alto contenido en sales principalmente por efecto de la aridez climática. En general la salinidad aumenta con la profundidad, que se atribuye a la interacción agua-roca y, en algunos sectores, a la mezcla con agua marina relicta (Herrera 2001).

Como singularidad cabe destacar la existencia de cuencas cerradas por materiales muy permeables, que permiten una circulación subsuperficial, como en el caso del Malpaís de Pozo Negro. También es singular, por su funcionamiento hidrológico, el caso de la zona endorreica de los alrededores de Lajares-La Oliva o el malpaís de la Cordillera del Bayuyo en el extremo norte.

No se descarta la posibilidad de que existan reservas en la Península de Jandía y en el macizo de La Muda-Aceitunal. Estas reservas tendrían la consideración de recursos no renovables o difícilmente renovables.

3.3 MAGNITUDES GEOHIDROLÓGICAS DE REFERENCIA (Fuente: Herrera, 2001-Macizo de Betancuria)

FORMACIÓN GEOLÓGICA	PERMEABIL	DAD (m/día)	TRANSMISIVIDAD (m²/día)		
1 0	Min.	Max.	Min.	Max.	
Basaltos Miocenos (lavas)	0,009	1,2	-	-	
La va s submarinas del Complejo Basal	0,1	0,3	-	-	
Rocas i ntrusivas del Complejo Basal	-	-	47	114	

La principal característica hidrogeológica del conjunto insular es su anisotropía, que genera variaciones muy grandes (de hasta cuatro órdenes de magnitud) de los principales parámetros hidrogeológicos. La permeabilidad y la porosidad generalmente se encuentran asocia das a los tramos escoriáceos de coladas y de pósitos piroclásticos poco compactados, y a coladas fracturadas generalmente por grietas de retracción. Los tramos impermeables pueden corresponder a coladas donde los poros y fisuras no están conectados, ciertos niveles de tobas y almagres. Los diques pueden actuar como barreras impermeables o como drenes permeables si están suficientemente fracturados, favoreciendo en general el drenaje vertical frente al horizontal debido a su disposición. El paso del tiempo empobrece las características hi drogeológicas por alteración (generación de minerales arcillosos que puedan rellenar o sellar grietas) y por compactación por el peso en profundidad (ITGE, 1990). También encostramientos minimizan de forma drástica la permeabilidad.

3.4 PIEZOMETRÍA

POSICIÓN DE LA SUPERF. FREÁTICA EN 1983 (m s.n.m.)		POTENCIA MEDIA ZONA DE TRÁNSITO	SUPERF.	DESCENSO DE LA S DESCENSO DE LA SUPERF. FREÁTICA INICIAL (1983) RESPECTO DE 1989 (m)			DESCENSO DE LA SUPERF. FREÁTICA EN 2012 RESPECTO DE 1983 (m)		
Max.	Min.	Media	Promedio anual	Max.	Min.	Media	Max.	Min.	Media
125	0	45	-	25	0	10	9	-22	-5,4

El flujo es asimétrico, con gradientes muy bajos en algunas zonas (principalmente en la Llanura Central). En toda la costa noroeste se producen des cargas próximas a la costa y con un contenido en sales elevado. Los nacientes situados en la cara norte de la península de Jandía y, en general, los situados en las cabeceras de los barrancos tienen mejor calidad relativa. Y por otra parte, cabe destacar la práctica desconexión hidrogeológica de la Península de Jandía del resto de la isla.

A falta de datos para analizar correctamente la evolución del nivel piezométrico en las masas de aguas subterráneas delimitadas en la DH de Fuerteventura, la comparativa del único dato disponible en el ciclo de planificación hidrológica (2012) con los registros piezométricos históricos (1983 y 1989), pone de manifiesto que no existe una tendencia general descendente ni ascendente clara en ninguna de las tres masas de aguas subterránea con datos. En el Plan Hidrológico de Fuerteventura de 1999 (CIAF, 1999) se po nía de manifiesto que existían zonas en las que sondeos profundos habían dejado secos a pozos antiguos someros.

4. CARACTERÍSTICAS DE LA ZONA NO SATURADA

4.1 LITOLOGÍA

La litología de la zona de tránsito es la correspondiente a la descrita en el apartado de características geológicas generales, dependiendo del edificio volcánico en el que nos encontremos.

4.2 ESPESOR

Sin datos

4.3 SUELOS EDÁFICOS

De acuerdo a los criterios de Soil Taxonomy (1998) se pueden identificar tres órdenes de suelos en la isla de Fuerteventura: Aridisoles, Entisoles y Andisoles. También existen formaciones sin suelo, conformadas por materiales volcánicos recientes.

La fertilidad natural de los suelos de la isla es baja debido a la escasa disponibilidad de agua, la elevada salinidad y la deficiencia en algunos nutri entes como nitrógeno y fósforo. Ello, junto con otras características de sus suelos como la elevada pedregosidad, el escaso espesor útil o la pendiente en que se emplazan, determina que sólo un 6,6% de la superficie insular sea apta para una actividad agrícola productiva y aun con ciertas restricciones.

4.4 RED DE SEG	4.4 RED DE SEGUIMIENTO											
Código Estación	Denominación	Tipo	Zona hidroquímica	Seguimiento Cuantitativo	Seguimiento Químico	Programa						
1220020	Sondeo nº20. Tuineje	Sondeo	ZH2	Si	Si	Operativo						
1220023	Sondeo nº23. Tiscamanita	Sondeo	ZH2	Si	Si	Operativo						
1220024	Sondeo nº24. Las Casitas	Sondeo	ZH2	Si	Si	Operativo						
1220025	Sondeo nº25. Juan Gopar	Sondeo	ZH2	Si	Si	Operativo						
1220026	Sondeo nº26. Tesejerague	Sondeo	ZH2	Si	Si	Operativo						
1220027	Pozo nº27	Pozo	ZH2	Si	Si	Operativo						
1220028	Pozo nº28	Pozo	ZH2	Si	Si	Operativo						
1220029	Pozo nº29	Pozo	ZH2	Si	Si	Operativo						
1220030	Sondeo nº30. Valle del Aceitún	Sondeo	ZH2	Si	Si	Operativo						
1220031	Pozo nº31	Pozo	ZH2	Si	Si	Operativo						
1220032	Pozo nº 32. Catalina García	Pozo	ZH1	Si	Si	Operativo						

4.5 Nº DE PUNTOS DE LAS REDES DE CONTROL	
PROGRAMA DE CONTROL Y SEGUIMIENTO DEL ESTADO CUANTITATIVO	PROGRAMA DE CONTROL Y SEGUIMIENTO QUÍMICO
Red de muestreo: 11	Control de vigilancia: Control operativo: 11

5. SISTEMAS DE SUPERFICIE ASOCIADOS Y ECOSISTEMAS DEPENDIENTES

5.1 SISTEMAS ACUÁTICOS										
TIPO	TIPO NOMBRE TIPO VINCULACIÓN CÓDIGO TIPO									
Costera	Caleta del Espino-Punta Entallada	Flujo mar	ES70FVTI1							
Costera	Punta Entallada-Punta de Jandía	Flujo mar	ES70FVTII							

5.2 ECOSISTEMAS DEPENDIENTES

No se ha i dentificado ningún e cosistema asociado o dependiente de las aguas subterráneas en la masa ES70FV003.

6. BALANCE HÍDRICO

6.1 BALANCE HÍDRICO

Volumen extraído (hm³/año)	Aproximación a los recursos disponibles (hm³/año)	Índice de explotación (Extracciones/Recursos)
3,52	4,0	0,9

A partir del tratamiento de los datos históricos de las variables climáticas correspondientes al periodo 1980/81-2017/18, para esta masa de agua se obtuvieron valores de precipitación, evapotranspiración real, escorrentía superficial y recarga de 31,3, 30,8, 0,0 y 0,45 hm³/año, respectivamente.

6.2 OBSERVACIONES SOBRE EL BALANCE

Los datos de extracciones se estiman en función del volumen captado por las EDAS.

7. EXPLOTACIÓN DE LAS AGUAS SUBTERRÁNEAS

7.1 APROVECHAMIENTOS										
	Nº DE OBRAS	APROVECHAMIENTOS (hm³/año)								
Tipo	Número	Funciona	2015							
Pozo	1100	131								
Sondeo	109	21								
Otros	15	-								
Galería	-	-								
Nº Obras en la masa	1224	152	3,52*							

 $[\]hbox{*Los datos de extracciones se estiman en función del volumen captado por las EDAS.}$

8. HIDROQUÍMICA (Datos 2016-2022)

Nº puntos de control:

11

% obras muestreadas con agua:

% (% del caudal) Densidad media muestreo:

1 punto cada 26,25 km²

PARÁMETRO	UNIDAD	VALORES (ZONA AD HIDROQUÍMICA 1)		VALOR UMBRAL	Nº MUESTRAS > VALOR	RD 03/2023	Nº MUESTRAS
		min-máx	Promedio (P)		UMBRAL	Referencia	>RD 03/2023
C.E.	(μS/cm)	11.000	11.000	5.500	1	2.500	1
Sílice	mg/l	-	-	-	-	-	-
Calcio	mg/l	210	210	-	-	-	-
Magnesio	mg/l	200	200	-	-	-	-
Potasio	mg/l	49	49	-	-	-	-
Sodio	mg/l	2.104	2.104	-	-	200	1
Amonio	mg/l	0,6	0,6	0,5	1	0,5	1
Bicarbonatos	mg/l	270	270	-	-	-	-
Cloruros	mg/l	2.952	2.952	780	1	250	1
Sulfatos	mg/l	1.531	1.531	250	1	250	1
Nitratos	mg/l	17	17	50	0	50	0
Flúor	mg/l	-	-	1,5	-	1,5	-
Nitrito	mg/l	-	-	0,5	-	0,5	-
Fosfato	mg/l	-	-	-	-	-	-

PARÁMETRO	UNIDAD	VALORES (ZONA HIDROQUÍMICA 2)		VALOR UMBRAL	Nº MUESTRAS > VALOR	RD 03/2023	Nº MUESTRAS	
		min-máx	Promedio (P)		UMBRAL	Referencia	>RD 03/2023	
C.E.	(µS/cm)	2.300 - 12.400	2387	10.000	6	2.500	18	
Sílice	mg/l	-	-	-	-	-	-	
Calcio	mg/l	38,4 -623	153	-	-	-	-	
Magnesio	mg/l	21 - 220	110	-	-	-	-	
Potasio	mg/l	11,5 - 75	30	-	-	-	-	
Sodio	mg/l	227-2.648	1540	-	-	200	19	
Amonio	mg/l	0,0 - 6	0,5	0,5	3	0,5	3	
Bicarbonatos	mg/l	262 – 681	436	-	-	-	-	
Cloruros	mg/l	444 – 3788	2387	2.500	11	250	19	
Sulfatos	mg/l	210 – 2250	1020	2.500	0	250	17	
Nitratos	mg/l	0,0 – 63	22	50	2	50	2	
Flúor	mg/l	1,2	1,2	1,5	0	1,5	0	
Nitrito	mg/l	-	0,0	0,5	-	0,5	-	
Fosfato	mg/l	-	-	-	-	-	-	

	VALORES UMBRAL										
Parámetro	Unidad	Nivel de referencia	Criterio de calidad	Valor umbral	Promedio 2007	Promedio 2012	Promedio 2016	Promedio 2018	Promedio 2022		
Nitratos	mg/l	-	50	50	35	42	44	-	36		
Amonio	mg/l	-	0,5	0,5	0	1,23	0,3	-	1,19		
Fluoruros	mg/l	-	1,5	1,5	0,2	-	-	-	-		
Nitritos	mg/l	-	0,5	0,5	0	-	-	-	-		
Fosfatos	mg/l	-	-	-	-	-	-	-	-		
				ZONA HIDROC	UÍMICA 1						
Cloruros	mg/l	780	250	780	-	3.510	2.952	-	-		
Sulfatos	mg/l	177	250	250	-	1.556	1.531	-	-		
C.E.	μS/cm	5.500	2.500	5.500	-	12.900	11.000	-	-		
	ZONA HIDROQUÍMICA 2										
Cloruros	mg/l	2.500	250	2.500	2.219	2.468	2372	1899	2457		
Sulfatos	mg/l	2.500	250	2.500	1.177	1.411	1.050	2.046	880		
C.E.	μS/cm	10.000	2.500	10.000	8.125	9.936	8.744	8.169	8.352		

Incumplimientos y valoración del periodo 2016-2022

En la masa ES70FV003 se reportan i ncumplimientos en a mbas zonas hidroquímicas, si bien solo existe un punto de control repres entativo de la zona 1. El umbral de cloruros se supera en siete puntos de control, cuatro de los cualesta mbién superan el de conductividad eléctrica, y uno, perteneciente a la zona hidroquímica 1, el umbral de sulfato.

8.1 EVALUACIÓN DEL RIESGO – ANÁLISIS DPSIR								
IMPACTO	IMPACTO PRESIÓN							
1.4.Combousingsión soling / Indussión	3.1 Extracción / Desvío - Agricultura	1 Agricultura						
1.4 Conta minación salina / Intrusión	3.2 Extracción / Desvío - Abastecimiento	11 Desarrollo Urbano						
3.3 Extra cci ones que exceden el	3.1 Extracción / Desvío - Agricultura	1 Agricultura						
re curs o disponible de agua s ubterránea	3.2 Extracción / Desvío - Abastecimiento	11 Desarrollo Urbano						

8.2 ESTADO DE LA MASA DE AGUA										
	Bueno	Malo								
ESTADO	CUANTITATIVO	ESTADO QU	JÍMICO							
Bueno	Malo	Bueno	Malo							

9. OBJETIVOS MEDIOAMBIENTALES

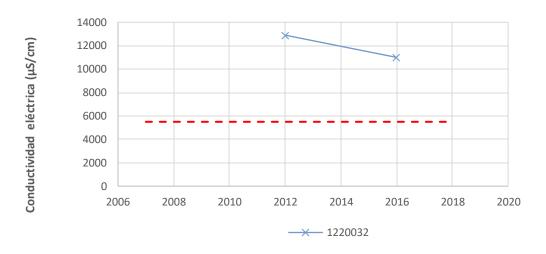
- Adecuar las disponibilidades del acuífero y su explotación a fin de propiciar la estabilización del nivel freático.
- Proteger, mejorar y regenerar la masa de agua y garantizar el equilibrio entre la extracción y recarga.
- Evitar o limitar la entrada de contaminantes y el deterioro del estado de la masa de agua subterránea, e invertir toda tendencia significativa y sostenida al aumento de la concentración de cualquier contaminante debido a la actividad humana.

PRÓRROGAS

En el caso de la contaminación difusa, se observa que la respuesta de las aguas subterrá neas a las medidas programadas para corregir la situación y tratar de invertir tendencias es muy lenta, lo que justifica, cuanto menos, la solicitud de prórrogas. De igual forma, la estabilización de los niveles freáticos garantizando un equilibrio entre la extracción y la recarga, en medios áridos como el de la isla de Fuerteventura, es un proceso que conlleva un largo periodo de recuperación.

En consecuencia, se plantea una solicitud de prórroga en el cumplimiento de los objetivos medioambientales de la masa de agua subterránea ES70FV003-Masa de la Cuenca de Gran Tarajal al horizonte 2033, que deberá ser revisada en el 2027 sobre la base de los nuevos datos disponibles.

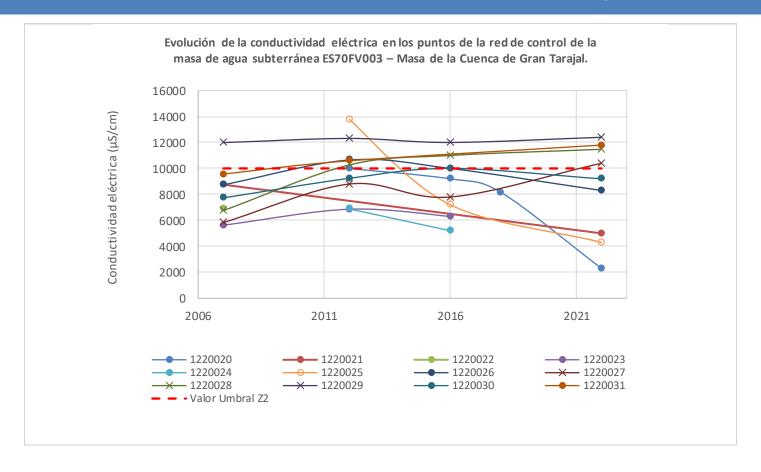
OBJETIVOS MENOS RIGUROSOS

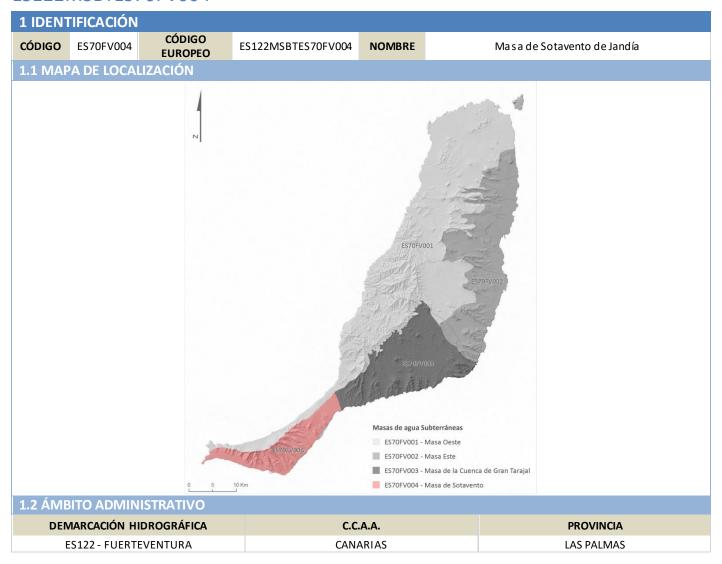

No se han establecido para la masa de agua objetivos medioambientales menos rigurosos.

10. DETERMINACIÓN DE TENDENCIAS CONTAMINANTES

DETERMINACIÓN DE TENDENCIAS Y DEFINICIÓN DE PUNTOS DE PARTIDA DE INVERSIONES DE TENDENCIAS										
	Nº ESTACIONES/	VALOR DEL PARÁMETRO (ppm)		TRO (ppm)	Período (2007-2019)			Punto de partida de inversión		
PARÁMETRO	Nº MUESTRAS	máximo	mínimo	promedio	Perc. 25	Perc. 75	Perc. 90	de tendencia (% valor		
Nitratos	11/19	63	0	22	0	33	44	37,5 ppm	(75%)	
	ZONA HIDROQUÍMICA 1									
Cloruros	1/1	2.952	2.952	2.952	-	-	-	550 ppm	(75%)	
Sulfatos	1/1	1.531	1.531	1.531	-	-	-	550 ppm	(75%)	
Conductividad	1/1	11.000	11.000	11.000	-	-	-	3.750 μS/cm	(75%)	
				ZONA HIDRO	OQUÍMICA 2					
Cloruros	11/19	3.788	444	2.387	1.757	2.930	3.528	1.875 ppm	(75%)	
Sulfatos	11/19	2.250	210	1.020	692	1.542	2.047	1.875 ppm	(75%)	
Conductividad	11/19	12.400	2.300	8.529	6.870	10.620	12.062	7.500 μS/cm	(75%)	

En el tercer ciclo de planificación, la masa de ES70FV003 – Masa de la Cuenca de Gran Tarajal continúa en mal estado químico debido a los incumplimientos los parámetros de salinidad.


En la zona hidroquímica 1 no se tienen datos recientes del único punto representativo de la (1220032), si bien los datos disponibles de años a nteriores indican cierto descenso, tanto de la conductividad eléctrica –en el siguiente gráfico- como los cloruros y sulfatos, aunque muy encima de los respectivos valores umbrales.


En la zona hidroquímica 2, si bien la mayoría de los puntos de la masa presentan una tendencia descendente de los valores de la conductividad eléctrica, la existencia de tres puntos con valores en ascenso, no permite considerar esta tendencia para el conjunto de la masa.

Con respecto al resto de parámetros, los cloruros presentan valores promedios a nuales que superan el 75% del valor umbral que considera la inversión del cambio de tendencia. En cambio, los sulfatos se sitúan por debajo de su valor umbral en todos los años de mediciones, y solo en el 2018 se supera el 75% del mismo.

Con todo, no se espera que a medio plazo se alcancen los objetivos medioambientales de buena calidad química de esta masa de agua subterránea.

4.- FICHA DE CARACTERIZACIÓN ADICIONAL DE LA MASA DE AGUA SUBTERRÁNEA ES122MSBTES70FV004

1.3 CARACTERIZACIÓN FUNCIONAL Y TERRITORIAL										
COORI	DENADAS	ÁREA TOTAL DE LA MASA	LONGITUD	PERÍMETRO	ALTITU	D (m s.n.m.)				
CEN'	TROIDE	(km²)	COSTA (km)	(km)	Máxima	Mínima				
X:	Y:	136,45		84,9	813,8	0				
565.650	3.108.932	130,43	-	04,9	015,0	U				
% SUPERFICIE MASA EN CULTIVO (2014)		0,29								

	SECTOR	NOMBRE
ZONIFICACIÓN HIDROGEOLÓGICA	J2	Sector 2 de la Zona de Jandía. Zona cuyas aguas vierten hacia el sur (Sotavento)
ESTRUCTURA GEOHIDROLÓGICA DOMINANTE	,	s hidrogeológicos on los Basaltos de la Serie I, que es de donde se extrae la mayor parte materiales aluviales de los barrancos principales.

NOMBRE MUNICIPIO NOMBRE MUNICIPIO NOLUIDA EN MASA % ÁREA MUNICIPIO RESPECTO TOTAL MASA	NOMBRE MUNICIPIO	% ÁREA MUNICIPIO INCLUIDA EN MASA	% ÁREA MUNICIPIO RESPECTO TOTAL MASA
---	------------------	--------------------------------------	--

Documentos inidales del cuarto ciclo de planificación hidrológica - ANEXO 2. Caracterización Adicional de las Masas de Agua Subterránea De marcación Hidrográfica de Fuerteve ntura

Pájara	35,26	100	

1.4 POBLACIÓN ASENTADA		
TIPO DE POBLACIÓN	Nº DE HABITANTES EN EL ENTORNO DE LA MASA	CENSO
De derecho	18.086	INE (2022)

1.5 ZONAS PROTEGIDAS REGISTRADAS EN LA MASA DE AGUA						
Protección de hábitat/especies	CÓDIGO	DENOMINACIÓN				
	ES7010042	Playa del Matorral				
	ES7010033	Jandía				
Red Canaria de Es pacios Naturales Protegidos	CÓDIGO	DENOMINACIÓN				
	ES122ENPFV003	Parque Natural de Jandía				
	ES122ENPFV007	Sitio de Interés Científico de la Playa del Matorral				

2. CARACTERÍSTICAS GEOLÓGICAS GENERALES

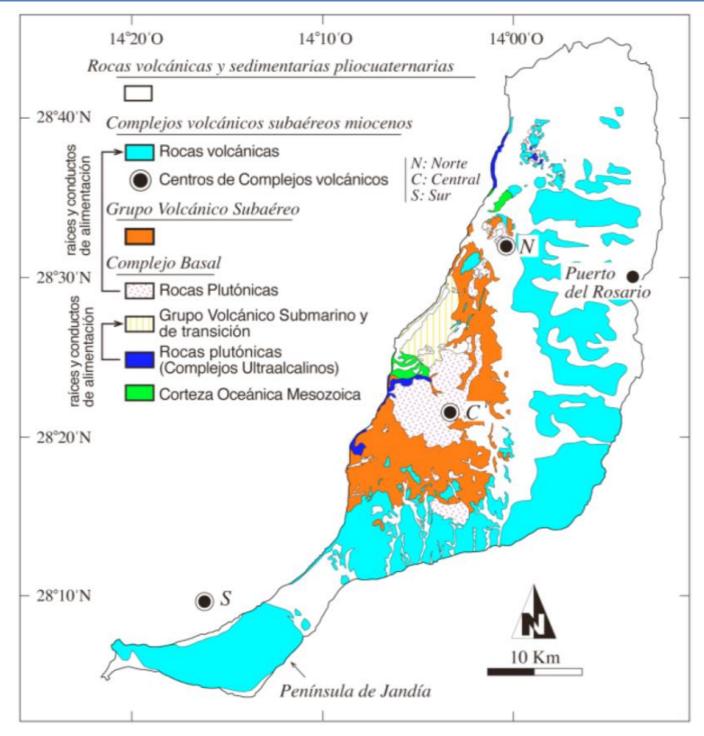
2.1 ÁMBITO GEOESTRUCTURAL

La geomorfología estructural de la isla de Fuerte ventura, aparece condicionada por la antigüedad de sus materiales, observándose formas vol cánicas directas, formas vol cánicas derivadas (diques exhumados, necks y cuchillos) y formas alomadas asociadas al Complejo Basal.

En su conjunto, la configuración morfoestructural de la Isla obedece a su larga evolución geológica y a la construcción en dos grandes etapas de formación: la que conforma el Complejo Basal y la correspondiente a la actividad volcánica subaérea.

2.2 COLUMNA VOLCANOESTRATIGRÁFICA

COLUMNA LITOLÓGICA TIPO GENERAL (fuente: SPA-15, 1975			
LITOLOGÍA	FORMACIÓN	POTENCIA (m)	EDAD GEOLÓGICA	OBSERVACIONES
Conos de cínder y tobas, lavas "aa" y "pahoe- hoe"	Basaltos Recientes y Sub-Recientes (Serie IV)	Pocos metros	0-0,8 Ma	Bas altos alcalinos-olivínicos
Cráteres pirodásticos. Superficies de cráteres cubiertas por caliche.	Volcanes del Cuaternario Superior (Seri e III)	Pocos metros	1,7-1,8 Ma	Bas altos alcalinos-olivínicos
Volca nes en escudo y campos de lava asociados. Paleo-playas y paleo-dunas	Basaltos Cuaternarios (Serie II)	Decenas de metros	2,4-2,9 Ma	Basaltos alcalinos-olivínicos
Basaltos sub-horizontales, conos enterados, aglomerados de nube ardiente, diques. Piroclastos principalmente, conos enterados, diques.	Basaltos Antiguos (Serie I)	300-600 (máx 800m)	Mio-Plioceno	Basaltos alcalinos- olivínicos. Similar a Gran Canaria y Tenerife.
Diques basálticos Diques a nulares en rocas plutónicas (sieníticos)		Hasta 700m s.n.m.	Terciario Inferior y Medio	Similar a La Palma y Gomera
Rocas plutónicas; piroxenos, gabros, dioritas	Commissio Bossi	-	-	
La va s basálticas almohadilladas	Complejo Basal	Centenares de metros	Mesozoico Cretáceo Superior	Plegado y atravesado por diques
Rocas s edimentarias, calizas, a reniscas, etc.		-	-	


2.3 DESCRIPCIÓN GEOLÓGICA

Los materiales geológicos que constituyen la isla de Fuerteventura se pueden agrupar en tres grandes dominios: Complejo Basal, Post-Complejo Basal y formaciones sedimentarias recientes.

El complejo basal está esencialmente representado por un conjunto de materiales volcánicos submarinos (Oligoceno) apoyados so bre un fragmento de corteza oceánica de edad Jurásico inferior-Cretácico inferior y medio, que se encuentran intruidos por una secuencia de cuerpos plutónicos y un importante haz filoniano (Casillas et al, 2008), del oligoceno superior-Mioceno.

Los materiales del Post-Complejo Basal se corresponden con la fase de construcción subaérea de la isla y han sido agrupados tradicionalmente en las series basálticas o volcánicas (según autores) I, II, III y IV

Las formaciones sedimentarias recientes, que son la última unidad estratigráfica generada en la isla, se han conformado funda mentalmente en el holoceno. Según la descripción del ITGE (1990), se diferencian depósitos de rambla (en la red fluvial), conos de deyección (abanicos de derrubios de ladera), sedimentos la custres (limos y arcillas de relleno de pequeñas cuencas endorreicas), formaciones de 'caliches' y depósitos de playas de arena.

Fuente: Casillas, R.; Fernández, C.; Ahijado, A., Gutiérrez, M.; García-Navarro, E. & Camacho, M. (2008a). Excursión postcongreso nº2: Crecimiento temprano y evolución tectónica de la Isla de Fuerteventura. En: Pérez-Torrado, F. y Cabrera, M.C. (Ed). Iti nerarios Geológicos por las Islas Canarias: Fuerteventura, Lanzarote, La Gomera y El Hierro. Sociedad Geológica de España. Geoguías, 6: 59-86.").

3. CARACTERÍSTICAS HIDROGEOLÓGICAS

3.1 LÍMITES HIDROGEOLÓGICOS DE LA MASA

Al Sur y Oeste el sistema a cuífero a bierto de la masa de agua subterránea l imita con el océano Atlántico, siendo el sentido de flujo de salida al mar. Limita al Norte con la masa de agua ES70FV001-Masa Oeste y al Este con la masa de agua ES70FV003- Masa de la Cuenca de Gran Tarajal. El sector a cuífero de la Serie I está independizado del resto de la isla.

Geográficamente se encuentra limitada por la línea de costa, la cota 300 y el istmo de la Pared.

3.2 NATURALEZA DEL ACUÍFERO

Se definen dos tipos acuíferos: insular (asociado a series antiguas) y someros (asociados a formaciones sedimentarias cuatemarias y a formaciones sedimentarias modernas). Estos acuíferos en general funcionan de forma independiente, pero en algunos puntos, por su ubicación, están conectados con el acuífero insular. Las rocas con mayor interés hidrogeológico son los Basaltos de la Serie I, que es de donde se extrae la mayor parte del agua subterránea, y los materiales aluviales de los barrancos principales.

El comportamiento hidrogeológico es anisótropo. Los acuíferos muestran en general malas características hidrogeológicas debido a la aridez del clima (baja potencia saturada) y baja permeabilidad de los materiales. Gran parte de la recarga se produce ligada a la precipitación asociada a las zonas de mayor altitud y las gavias en la falda de las mismas, o en zonas susceptibles de recoger el agua mediante caños y conducirla hasta las gavias. Las gavias en uso actúan como verdaderas balsas de recarga. Se estima que reciben un aporte adicional de 200 mm, al que ha de sumarse la pluviometría correspondiente. Las aguas de recarga tienen un alto contenido en sales principalmente por efecto de la aridez climática. En general la salinidad aumenta con la profundidad, que se atribuye a la interacción agua-roca y, en algunos sectores, a la mezcla con agua marina relicta (Herrera 2001).

Como singularidad cabe destacar la existencia de cuencas cerradas por materiales muy permeables, que permiten una circulación subsuperficial, como en el caso del Malpaís de Pozo Negro. También es singular, por su funcionamiento hidrológico, el caso de la zona endorreica de los alrededores de Lajares-La Oliva o el malpaís de la Cordillera del Bayuyo en el extremo norte.

No se descarta la posibilidad de que existan reservas en la Península de Jandía y en el macizo de La Muda-Aceitunal. Estas reservas tendrían la consideración de recursos no renovables o difícilmente renovables.

3.3 MAGNITUDES GEOHIDROLÓGICAS DE REFERENCIA (Fuente: Herrera, 2001-Macizo de Betancuria)

FORMACIÓN GEOLÓGICA	PERMEABIL	IDAD (m/día)	TRANSMISIVIDAD (m²/día)	
TORNIAGION GEGEOGICA	Min.	Max.	Min.	Max.
Basaltos Miocenos (Iavas)	0,009	1,2	-	-
La va s submarinas del Complejo Basal	0,1	0,3	-	-
Rocas i ntrusivas del Complejo Basal	-	-	47	114

La principal característica hidrogeológica del conjunto insular es su anisotropía, que genera variaciones muy grandes (de hasta cuatro órdenes de magnitud) de los principales parámetros hidrogeológicos. La permeabilidad y la porosidad generalmente se encuentran asocia das a los tramos escoriáceos de coladas y de pósitos piroclásticos poco compactados, y a coladas fracturadas generalmente por grietas de retracción. Los tramos impermeables pueden corresponder a coladas donde los poros y fisuras no están conectados, ciertos niveles de tobas y almagres. Los diques pueden actuar como barreras impermeables o como drenes permeables si están suficientemente fracturados, favorecien do en general el drenaje vertical frente al horizontal debido a su disposición. El paso del tiempo emp obrece las características hidrogeológicas por alteración (generación de minerales arcillosos que puedan rellenar o sellar grietas) y por compactación por el peso en profun didad (ITGE, 1990). Ta mbién encostramientos minimizan de forma drástica la permeabilidad.

3.4 PIEZOMETRÍA

El flujo es asimétrico, con gradientes muy bajos en algunas zonas (principalmente en la Llanura Central). En toda la costa noroeste se producen des cargas próximas a la costa y con un contenido en sales elevado. Los nacientes situados en la cara norte de la península de Jandía y, en general, los situados en las cabeceras de los barrancos tienen mejor calidad relativa. Y por otra parte, cabe destacar la práctica desconexión hidrogeológica de la Península de Jandía del resto de la isla.

Ante la falta de datos para analizar correctamente la evolución del nivel piezométrico en la masa de a gua subterránea ES70FV004-Masa de Sota vento de Jandía, se propone en futuros ciclos de planificación, la realización de un estudio más pormenorizado de la evolución de los niveles piezométricos, ya sea mediante la incorporación de nuevos puntos de control más representativos (considerar los sondeos profundos) y/o a través de la medición de volúmenes de extracción con la instalación de contadores integradores volumétricos en los puntos de control ya existentes.

4. CARACTERÍSTICAS DE LA ZONA NO SATURADA

4.1 LITOLOGÍA

La litología de la zona de tránsito es la correspondiente a la descrita en el apartado de características geológicas generales, dependiendo del edificio volcánico en el que nos encontremos.

4.2 ESPESOR

Sin datos

4.3 SUELOS EDÁFICOS

De acuerdo a los criterios de Soil Taxonomy (1998) se pueden identificar tres órdenes de suelos en la isla de Fuerteventura: Aridisoles, Entisoles y Andisoles. También existen formaciones sin suelo, conformadas por materiales volcánicos recientes.

La fertilidad natural de los suelos de la isla es baja debido a la escasa disponibilidad de agua, la elevada salinidad y la deficiencia en algunos nutri entes como nitrógeno y fósforo. Ello, junto con otras características de sus suelos como la elevada pedregosidad, el escaso espesor útil o la pendiente en que se emplazan, determina que sólo un 6,6% de la superficie insular sea apta para una actividad agrícola productiva y aun con ciertas restricciones.

4.4 RED DE SEGUIMIENTO						
Código Estación	Denominación	Tipo	Zona hidroquímica	Seguimiento Cuantitativo	Seguimiento Químico	Programa
1220036	Sondeo nº36. Morro Jable	sondeo	ZH2	Si	Si	Operativo

4.5 Nº DE PUNTOS DE LAS REDES DE CONTROL		
PROGRAMA DE CONTROL Y SEGUIMIENTO DEL ESTADO CUANTITATIVO	PROGRAMA DE CO	NTROL Y SEGUIMIENTO QUÍMICO
Red de muestreo: 1	Control de vigilancia:	Control operativo: 1

5. SISTEMAS DE SUPERFICIE ASOCIADOS Y ECOSISTEMAS DEPENDIENTES

5.1 SISTEMAS ACUÁTICOS					
TIPO	NOMBRE	TIPO VINCULACIÓN	CÓDIGO	TIPO DE PROTECCIÓN	
Costera	Punta Entallada-Punta de Jandía	Flujo mar	ES70FVTII		
Costera	Punta Jandía-Punta del Lago	Flujo mar	ES70FVT12		

5.2 ECOSISTEMAS DEPENDIENTES

No se ha i dentificado ningún e cosistema asociado o dependiente de las aguas subterráneas en la masa ES70FV004.

6. BALANCE HÍDRICO

6.1 BALANCE HÍDRICO

Volumen extraído (hm³/año)	Aproximación a los recursos disponibles (hm³/año)	Índice de explotación (Extracciones/Recursos)
0,05	1	0,1

A partir del tratamiento de los datos históricos de las variables climáticas correspondientes al periodo 1980/81-2017/18, para esta masa de agua se obtuvieron valores de precipitación, evapotranspiración real, escorrentía superficial y recarga de 17, 16, 0,1 y 1 hm³/año, respectivamente.

6.2 OBSERVACIONES SOBRE EL BALANCE

Los datos de extracciones se estiman en función del volumen captado por las EDAS.

7. EXPLOTACIÓN DE LAS AGUAS SUBTERRÁNEAS

7.1 APROVECHAMIENTOS					
		Nº DE OBRAS	APROVECHAMIENTOS (hm³/año)		
Tipo	Número	Funciona	2015		
Pozo	12	1			
Sondeo	2	1			
Otros	1	1			
Galería	-	-			
No inventariadas	53	-			
Nº Obras en la masa	15	3	0,05*		

 $[\]hbox{*Los datos de extracciones se estiman en función del volumen captado por las EDAS.}$

8. HIDROQUÍMICA (2016-2022)

1

Nº puntos de control:

% obras muestreadas con agua:

% (% del caudal) Densidad media muestreo:

1 punto cada 136,5 km²

PARÁMETRO	UNIDAD	ZONA HIDROQUÍMICA 2		VALOR UMBRAL	Nº MUESTRAS > VALOR	RD 03/2023	Nº MUESTRAS
		min-máx	Promedio (P)		UMBRAL	Referencia	>RD 03/2023
C.E.	(µS/cm)	27.800	27.800	10.000	1	2.500	1
Calcio	mg/l	260	260	-	-	-	-
Magnesio	mg/l	656,2	656,2	-	-	-	-
Potasio	mg/l	587	587	-	-	-	-
Sodio	mg/l	7.491	7.491	-	-	200	1
Amonio	mg/l	0	0	0,5	-	0,5	0
Bicarbonatos	mg/l	297	297	-	-	-	-
Cloruros	mg/l	10.218	10.218	2.500	1	250	1
Sulfatos	mg/l	1.450	1.450	2.500	0	250	1
Nitratos	mg/l	32	32	50	0	50	0
Flúor	mg/l	-	-	1,5	-	1,5	-
Nitrito	mg/l	-	-	0,5	-	0,5	-
Fosfato	mg/l	-	-	-	-	-	-

Incumplimientos

El incumplimiento se de riva de un único punto de control, con una única medición en el tercer ciclo de planificación (2022), que se localiza en Morro Jable, próximo a la costa, y que refleja valores elevados de conductividad eléctrica y cloruros, con toda probabilidad influenciado por la interfase de agua dulce /salada.

8.1 EVALUACIÓN DEL RIESGO – ANÁLISIS DPSIR						
IMPACTO	PRESIÓN	DRIVER				
1.4 Conta minación salina / Intrusión	3.1 Extracción / Desvío - Agricultura	1 Agricultura				
1.4 Contamination Salina / Intrusion	3.2 Extracción / Desvío - Abastecimiento	11 Desarrollo Urbano				

8.2 ESTADO DE LA MASA DE AGUA Bueno Malo ESTADO CUANTITATIVO ESTADO QUÍMICO Bueno Malo Bueno Malo

9. OBJETIVOS MEDIOAMBIENTALES

Evitar o limitar la entrada de contaminantes y el deterioro del estado de la masa de agua subterránea, e invertir toda tendencia significativa y sostenida al aumento de la concentración de cualquier contaminante debido a la actividad humana.

PRÓRROGAS

En el caso de la contaminación difusa, se observa que la respuesta de las aguas subterrá neas a las medidas programadas para corregir la situación y tratar de invertir tendencias es muy lenta, lo que justifica, cuanto menos, la solicitud de prórrogas.

En consecuencia, se plantea una solicitud de prórroga en el cumplimiento de los objetivos medioambientales de la masa de agua subterránea ES70FV004 – Masa de Sotavento de Jandía al horizonte 2033, que deberá ser revisada en el 2027 sobre la base de los nuevos datos disponibles.

OBJETIVOS MENOS RIGUROSOS

No se han establecido para la masa de agua objetivos medioambientales menos rigurosos.

10. DETERMINACIÓN DE TENDENCIAS CONTAMINANTES

Sin datos.